Modelling Probabilistic Wireless Networks

(Extended Abstract)
  • Andrea Cerone
  • Matthew Hennessy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7273)


We propose a process calculus to model distributed wireless networks. The calculus focuses on high-level behaviour, emphasising local broadcast communication and probabilistic behaviour.

Our formulation of such systems emphasises their interfaces, through which their behaviour can be observed and tested, although this complicates their contextual analysis. Nevertheless we propose a novel operator with which networks can be decomposed into components. Using this operator we define probabilistic generalisations of the well-known may-testing and must-testing preorders.

We define an extensional probabilistic labelled transition system in which actions represent particular interactions networks support via their interfaces. We show that novel variations on probabilistic simulations support compositional reasoning for these networks which are sound with respect to the testing preorders. Finally, and rather surprisingly, we show that these simulations turn out not to be complete.


Wireless Network Composition Operator Wireless System Medium Access Control Protocol Probabilistic Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cerone, A., Hennessy, M.: A simple probabilistic broadcast language. Technical Report, Trinity College Dublin, CS-TR-2012-02 (2012),
  2. 2.
    Curran, E., Dowling, J.: Sample: Statistical network link modelling in an on-demand probabilistic routing protocol for ad hoc networks. In: WONS, pp. 200–205. IEEE Computer Society (2005)Google Scholar
  3. 3.
    Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing Finitary Probabilistic Processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 274–288. Springer, Heidelberg (2009), CrossRefGoogle Scholar
  4. 4.
    Ene, C., Muntean, T.: Testing theories for broadcasting processes. Sci. Ann. Cuza Univ. 11, 214–230 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ghassemi, F., Fokkink, W., Movaghar, A.: Verification of mobile ad hoc networks: An algebraic approach. Theor. Comput. Sci. 412(28), 3262–3282 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Godskesen, J.C.: Observables for Mobile and Wireless Broadcasting Systems. In: Clarke, D., Agha, G. (eds.) COORDINATION 2010. LNCS, vol. 6116, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Jurdak, R., Lopes, C.V., Baldi, P.: A survey, classification and comparative analysis of medium access control protocols for ad hoc networks. IEEE Communications Surveys and Tutorials 6(1-4), 2–16 (2004)CrossRefGoogle Scholar
  8. 8.
    Lanese, I., Sangiorgi, D.: An operational semantics for a calculus for wireless systems. Theor. Comput. Sci. 411(19), 1928–1948 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lanotte, R., Merro, M.: Semantic Analysis of Gossip Protocols for Wireless Sensor Networks. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS, vol. 6901, pp. 156–170. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Merro, M., Sibilio, E.: A Timed Calculus for Wireless Systems. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 228–243. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Mezzetti, N., Sangiorgi, D.: Towards a calculus for wireless systems. Electr. Notes Theor. Comput. Sci. 158, 331–353 (2006)CrossRefGoogle Scholar
  12. 12.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  13. 13.
    Nanz, S., Hankin, C.: Static analysis of routing protocols for ad-hoc networks, March 25 (2004)Google Scholar
  14. 14.
    Nanz, S., Hankin, C.: A framework for security analysis of mobile wireless networks. TCS: Theoretical Computer Science 367 (2006)Google Scholar
  15. 15.
    Prasad, K.V.S.: A calculus of broadcasting systems. Science of Computer Programming 25(2-3), 285–327 (1995)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic J. of Computing 2, 250–273 (1995)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Tanenbaum, A.S.: Computer networks. PTR Prentice-HallGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Andrea Cerone
    • 1
  • Matthew Hennessy
    • 1
  1. 1.Department of Statistics and Computer ScienceTrinity CollegeDublinIreland

Personalised recommendations