Advertisement

Knowledge-Based Distributed Conflict Resolution for Multiparty Interactions and Priorities

  • Saddek Bensalem
  • Marius Bozga
  • Jean Quilbeuf
  • Joseph Sifakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7273)

Abstract

Distributed decentralized implementation of systems of communicating processes raises non-trivial problems. Correct execution of multiparty interactions, subject to priority rules, requires sophisticated mechanisms for runtime conflict detection and resolution. We propose a method for detection of false conflicts which combines partial observation of the system’s state and apriori knowledge extracted from invariants. We propose heuristics for determining optimal sets of observations leading to implementations with particular guarantees. We provide preliminary experimental results on an implementation of the method in the BIP framework.

Keywords

Distributed System Priorities Knowledge Partial Observation Multiparty Interactions 

References

  1. 1.
    Gößler, G., Sifakis, J.: Priority Systems. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 314–329. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: Software Engineering and Formal Methods (SEFM), pp. 3–12 (2006)Google Scholar
  3. 3.
    Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level component-based models to distributed implementations. In: EMSOFT (2010)Google Scholar
  4. 4.
    Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: A framework for automated distributed implementation of component-based models. Distributed Computing, 1–27, http://dx.doi.org/10.1007/s00446-012-0168-6
  5. 5.
    Bonakdarpour, B., Bozga, M., Quilbeuf, J.: Automated distributed implementation of component-based models with priorities. In: EMSOFT, pp. 59–68 (2011)Google Scholar
  6. 6.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press (1995)Google Scholar
  7. 7.
    Halpern, J.Y., Fagin, R.: Modelling knowledge and action in distributed systems. Distributed Computing 3, 159–179 (1988)CrossRefGoogle Scholar
  8. 8.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. J. ACM 37, 549–587 (1990)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.H.: Compositional Verification for Component-Based Systems and Application. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 64–79. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Krckeberg, F., Jaxy, M.: Mathematical Methods for Calculating Invariants in Petri Nets. In: Rozenberg, G. (ed.) APN 1987. LNCS, vol. 266, pp. 104–131. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  12. 12.
    Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: D-Finder: A Tool for Compositional Deadlock Detection and Verification. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Bensalem, S., Bozga, M., Legay, A., Nguyen, T.H., Sifakis, J., Yan, R.: Incremental component-based construction and verification using invariants. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 256–257 (October 2010)Google Scholar
  14. 14.
    Chandy, K.M., Misra, J.: Parallel program design: a foundation. Addison-Wesley Longman Publishing Co., Inc., Boston (1988)MATHGoogle Scholar
  15. 15.
    Bagrodia, R.: Process synchronization: Design and performance evaluation of distributed algorithms. IEEE Transactions on Software Engineering (TSE) 15(9), 1053–1065 (1989)CrossRefGoogle Scholar
  16. 16.
    Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing multiparty synchronization. Concurrency and Computation: Practice and Experience 16(12), 1173–1206 (2004)CrossRefGoogle Scholar
  17. 17.
    Kumar, D.: An implementation of n-party synchronization using tokens. In: ICDCS, pp. 320–327 (1990)Google Scholar
  18. 18.
    Joung, Y.J., Smolka, S.A.: Strong interaction fairness via randomization. IEEE Trans. Parallel Distrib. Syst. 9(2), 137–149 (1998)CrossRefGoogle Scholar
  19. 19.
    Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Transactions on Programming Languages and Systems (TOPLAS) 6(4), 632–646 (1984)CrossRefGoogle Scholar
  20. 20.
    Ben-Hafaiedh, I., Graf, S., Quinton, S.: Building distributed controllers for systems with priorities. Journal of Logic and Algebraic Programming 80, 194–218 (2011)MATHCrossRefGoogle Scholar
  21. 21.
    Ricker, S., Rudie, K.: Know means no: Incorporating knowledge into discrete-event control systems. IEEE Transactions on Automatic Control 45(9), 1656–1668 (2000)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for Knowledge Based Controlling of Distributed Systems. In: Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 52–66. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Saddek Bensalem
    • 1
  • Marius Bozga
    • 1
  • Jean Quilbeuf
    • 1
  • Joseph Sifakis
    • 1
  1. 1.UJF-Grenoble 1 / CNRS VERIMAG UMR 5104GrenobleFrance

Personalised recommendations