Advertisement

Beyond Lassos: Complete SMT-Based Bounded Model Checking for Timed Automata

  • Roland Kindermann
  • Tommi Junttila
  • Ilkka Niemelä
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7273)

Abstract

Timed automata (TAs) are a common formalism for modeling timed systems. Bounded model checking (BMC) is a verification method that searches for runs violating a property using a SAT or SMT solver. Previous SMT-based BMC approaches for TAs search for finite counter-examples and infinite lasso-shaped counter-examples. This paper shows that lasso-based BMC cannot detect counter-examples for some linear time specifications expressed, e.g., with LTL or Büchi automata. This paper introduces a new SMT-based BMC approach that can find a counter-example to any non-holding Büchi automaton or LTL specification and also, in theory, prove that a specification holds. Different BMC encodings tailored for the supported features of different SMT solvers are compared experimentally to lasso-based BMC and discretization-based SAT BMC.

Keywords

Model Check Reachability Problem Bound Model Check Time Automaton Clock Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient Timed Reachability Analysis Using Clock Difference Diagrams. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Beyer, D., Noack, A.: Can Decision Diagrams Overcome State Space Explosion in Real-Time Verification? In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767, pp. 193–208. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Woźna, B., Zbrzezny, A., Penczek, W.: Checking reachability properties for timed automata via SAT. Fundamenta Informatica 55(2), 223–241 (2003)zbMATHGoogle Scholar
  9. 9.
    Sorea, M.: Bounded model checking for timed automata. Electronic Notes in Theoretical Computer Science 68(5) (2002)Google Scholar
  10. 10.
    Audemard, G., Cimatti, A., Kornilowicz, A., Sebastiani, R.: Bounded Model Checking for Timed Systems. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 243–259. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Malinowski, J., Niebert, P.: SAT Based Bounded Model Checking with Partial Order Semantics for Timed Automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 405–419. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Kindermann, R., Junttila, T., Niemelä, I.: Modeling for symbolic analysis of safety instrumented systems with clocks. In: ACSD 2011, pp. 185–194. IEEE (2011)Google Scholar
  13. 13.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability, pp. 825–885. IOS Press (2009)Google Scholar
  14. 14.
    Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)Google Scholar
  16. 16.
    Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings of bounded LTL model checking. Logical Methods in Computer Science 2(5:5), 1–64 (2006)MathSciNetGoogle Scholar
  17. 17.
    Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Clarke, E.M., Kroning, D., Ouaknine, J., Strichman, O.: Completeness and Complexity of Bounded Model Checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 85–96. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed büchi automata emptiness efficiently. Formal Methods in System Design 26(3), 267–292 (2005)zbMATHCrossRefGoogle Scholar
  20. 20.
    Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for Real-Time Systems. In: Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  21. 21.
    Lahtinen, J., Björkman, K., Valkonen, J., Frits, J., Niemelä, I.: Analysis of an emergency diesel generator control system by compositional model checking. VTT Working Papers 156, VTT Technical Research Centre of Finland (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Roland Kindermann
    • 1
  • Tommi Junttila
    • 1
  • Ilkka Niemelä
    • 1
  1. 1.Department of Information and Computer ScienceAalto UniversityAaltoFinland

Personalised recommendations