Skip to main content

A Reversible Abstract Machine and Its Space Overhead

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 7273)

Abstract

We study in this paper the cost of making a concurrent programming language reversible. More specifically, we take an abstract machine for a fragment of the Oz programming language and make it reversible. We show that the overhead of the reversible machine with respect to the original one in terms of space is at most linear in the number of execution steps. We also show that this bound is tight since some programs cannot be made reversible without storing a commensurate amount of information.

This work has been partially supported by the French National Research Agency (ANR), project REVER n. ANR 11 INSE 007.

References

  1. Altenkirch, T., Grattage, J.: A functional quantum programming language. In: Proc. of LICS 2005 (2005)

    Google Scholar 

  2. Axelsen, H.B.: Clean Translation of an Imperative Reversible Programming Language. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144–163. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  3. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible Machine Code and Its Abstract Processor Architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  4. Bennett, C.H.: Notes on the history of reversible computation. IBM Journal of Research and Development 32(1) (1988)

    Google Scholar 

  5. Brown, A.B., Patterson, D.A.: Undo for operators: Building an undoable e-mail store. In: USENIX Annual Technical Conference, General Track. USENIX (2003)

    Google Scholar 

  6. Buhrman, H., Tromp, J., Vitányi, P.M.B.: Time and Space Bounds for Reversible Simulation. In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 1017–1027. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  7. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  8. Danos, V., Regnier, L.: Reversible, irreversible and optimal lambda-machines. Theor. Comput. Sci. 227(1-2) (1999)

    Google Scholar 

  9. Field, J., Varela, C.A.: Transactors: a programming model for maintaining globally consistent distributed state in unreliable environments. In: Proc. of POPL 2005. ACM (2005)

    Google Scholar 

  10. Frank, M.P.: Introduction to reversible computing: motivation, progress, and challenges. In: 2nd Conference on Computing Frontiers. ACM (2005)

    Google Scholar 

  11. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.B.: Controlling Reversibility in Higher-Order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011 – Concurrency Theory. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  12. Lanese, I., Mezzina, C.A., Stefani, J.B.: Reversing Higher-Order Pi. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  13. Leeman, G.B.: A formal approach to undo operations in programming languages. ACM Trans. Program. Lang. Syst. 8(1) (1986)

    Google Scholar 

  14. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer (2008)

    Google Scholar 

  15. Ringenburg, M.F., Grossman, D.: AtomCaml: first-class atomicity via rollback. In: Proc. of ICFP 2005. ACM (2005)

    Google Scholar 

  16. Van Roy, P., Haridi, S.: Concepts, Techniques and Models of Computer Programming. MIT Press (2004)

    Google Scholar 

  17. Vitányi, P.M.B.: Time, space, and energy in reversible computing. In: 2nd Conference on Computing Frontiers. ACM (2005)

    Google Scholar 

  18. Yokoyama, T.: Reversible computation and reversible programming languages. Electr. Notes Theor. Comput. Sci. 253(6) (2010)

    Google Scholar 

  19. Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: Proc. of PEPM 2007. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 IFIP International Federation for Information Processing

About this paper

Cite this paper

Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, JB. (2012). A Reversible Abstract Machine and Its Space Overhead. In: Giese, H., Rosu, G. (eds) Formal Techniques for Distributed Systems. FMOODS FORTE 2012 2012. Lecture Notes in Computer Science, vol 7273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30793-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30793-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30792-8

  • Online ISBN: 978-3-642-30793-5

  • eBook Packages: Computer ScienceComputer Science (R0)