Skip to main content

Defining Distances for All Process Semantics

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 7273)

Abstract

Recently several authors have proposed some notions of distance between processes that try to quantify “how far away” is a process to be related with some other with respect to a certain semantics. These proposals are usually based on the simulation game, and therefore are mainly defined for simulation semantics or other semantics more or less close to these. These distances have a local character since only one of the successors of each state is taken into account in their computation. Here, we present an alternative proposal exploiting the fact that processes are trees. We define the distance between two of them as the cost of the transformations that we need to apply to get two processes related by the corresponding semantics. Our new distances can be uniformly defined for all the semantics in the ltbt-spectrum.

Keywords

  • Operational Semantic
  • Winning Strategy
  • Label Transition System
  • Semantic Distance
  • Simulation Game

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Partially supported by the Spanish projects TESIS (TIN2009-14312-C02-01), DESAFIOS10 (TIN2009-14599-C03-01) and PROMETIDOS S2009 / TIC-1465.

References

  1. Černý, P., Henzinger, T.A., Radhakrishna, A.: Quantitative Simulation Games. In: Manna, Z., Peled, D. (eds.) Time for Verification. LNCS, vol. 6200, pp. 42–60. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  2. Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation Distances. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 253–268. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  3. Chen, X., Deng, Y.: Game Characterizations of Process Equivalences. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 107–121. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  4. de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Software Eng. 35(2), 258–273 (2009)

    CrossRef  Google Scholar 

  5. de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: On the unification of process semantics: equational semantics. ENTCS 249, 243–267 (2009)

    Google Scholar 

  6. de Frutos Escrig, D., Gregorio Rodríguez, C., Palomino, M.: On the Unification of Process Semantics: Observational Semantics. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 279–290. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  7. Fahrenberg, U., Legay, A., Thrane, C.R.: The quantitative linear-time–branching-time spectrum. In: Chakraborty, S., Kumar, A. (eds.) FSTTCS. LIPIcs, vol. 13, pp. 103–114. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  8. Kiehn, A., Arun-Kumar, S.: Amortised Bisimulations. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 320–334. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  9. Lüttgen, G., Vogler, W.: Safe Reasoning with Logic LTS. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 376–387. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  10. Nielsen, M., Clausen, C.: Bisimulation, Games, and Logic. In: Karhumäki, J., Rozenberg, G., Maurer, H.A. (eds.) Results and Trends in Theoretical Computer Science. LNCS, vol. 812, pp. 289–306. Springer, Heidelberg (1994)

    CrossRef  Google Scholar 

  11. Stirling, C.: Modal and Temporal Logics for Processes. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 149–237. Springer, Heidelberg (1996)

    CrossRef  Google Scholar 

  12. Stirling, C.: Bisimulation, modal logic and model checking games. Logic Journal of the IGPL 7(1), 103–124 (1999)

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Thrane, C.R., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted transition systems. J. Log. Algebr. Program. 79(7), 689–703 (2010)

    MathSciNet  MATH  CrossRef  Google Scholar 

  14. van Glabbeek, R.: The linear time-branching time spectrum I: the semantics of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, ch. 1, pp. 3–99. Elsevier (2001)

    Google Scholar 

  15. Winskel, G.: Synchronisation Trees. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 695–711. Springer, Heidelberg (1983)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 IFIP International Federation for Information Processing

About this paper

Cite this paper

Romero Hernández, D., de Frutos Escrig, D. (2012). Defining Distances for All Process Semantics. In: Giese, H., Rosu, G. (eds) Formal Techniques for Distributed Systems. FMOODS FORTE 2012 2012. Lecture Notes in Computer Science, vol 7273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30793-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30793-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30792-8

  • Online ISBN: 978-3-642-30793-5

  • eBook Packages: Computer ScienceComputer Science (R0)