Advertisement

Abstract

Recently several authors have proposed some notions of distance between processes that try to quantify “how far away” is a process to be related with some other with respect to a certain semantics. These proposals are usually based on the simulation game, and therefore are mainly defined for simulation semantics or other semantics more or less close to these. These distances have a local character since only one of the successors of each state is taken into account in their computation. Here, we present an alternative proposal exploiting the fact that processes are trees. We define the distance between two of them as the cost of the transformations that we need to apply to get two processes related by the corresponding semantics. Our new distances can be uniformly defined for all the semantics in the ltbt-spectrum.

Keywords

Operational Semantic Winning Strategy Label Transition System Semantic Distance Simulation Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Černý, P., Henzinger, T.A., Radhakrishna, A.: Quantitative Simulation Games. In: Manna, Z., Peled, D. (eds.) Time for Verification. LNCS, vol. 6200, pp. 42–60. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation Distances. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 253–268. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Chen, X., Deng, Y.: Game Characterizations of Process Equivalences. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Software Eng. 35(2), 258–273 (2009)CrossRefGoogle Scholar
  5. 5.
    de Frutos-Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: On the unification of process semantics: equational semantics. ENTCS 249, 243–267 (2009)Google Scholar
  6. 6.
    de Frutos Escrig, D., Gregorio Rodríguez, C., Palomino, M.: On the Unification of Process Semantics: Observational Semantics. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 279–290. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Fahrenberg, U., Legay, A., Thrane, C.R.: The quantitative linear-time–branching-time spectrum. In: Chakraborty, S., Kumar, A. (eds.) FSTTCS. LIPIcs, vol. 13, pp. 103–114. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)Google Scholar
  8. 8.
    Kiehn, A., Arun-Kumar, S.: Amortised Bisimulations. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 320–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Lüttgen, G., Vogler, W.: Safe Reasoning with Logic LTS. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 376–387. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Nielsen, M., Clausen, C.: Bisimulation, Games, and Logic. In: Karhumäki, J., Rozenberg, G., Maurer, H.A. (eds.) Results and Trends in Theoretical Computer Science. LNCS, vol. 812, pp. 289–306. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  11. 11.
    Stirling, C.: Modal and Temporal Logics for Processes. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 149–237. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Stirling, C.: Bisimulation, modal logic and model checking games. Logic Journal of the IGPL 7(1), 103–124 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Thrane, C.R., Fahrenberg, U., Larsen, K.G.: Quantitative analysis of weighted transition systems. J. Log. Algebr. Program. 79(7), 689–703 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    van Glabbeek, R.: The linear time-branching time spectrum I: the semantics of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, ch. 1, pp. 3–99. Elsevier (2001)Google Scholar
  15. 15.
    Winskel, G.: Synchronisation Trees. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 695–711. Springer, Heidelberg (1983)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • David Romero Hernández
    • 1
  • David de Frutos Escrig
    • 1
  1. 1.Dpto. Sistemas Informáticos y Computación Facultad CC. MatemáticasUniversidad Complutense de MadridSpain

Personalised recommendations