Introduction and Theoretical Background

  • Mika Vesterinen
Part of the Springer Theses book series (Springer Theses)


This thesis documents two analyses performed with the large sample of dielectron and dimuon events collected by the D0 detector at the Fermilab Tevatron. The first analysis takes a novel approach to the long studied Drell-Yan transverse momentum distribution, which probes higher order effects in Quantum chromodynamics.


Higgs Boson Gauge Group Quantum Chromodynamics Standard Model Particle Weak Isospin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)CrossRefGoogle Scholar
  2. 2.
    S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    A. Salam, Weak and electromagnetic interactions, ed. by N. Svartholm. Proceedings of the 8th Nobel Symposium on Elementary Particle Theory, Relativistic Groups and Analyticity, Stockholm, Sweden, 1968, pp. 367–377, 1969Google Scholar
  4. 4.
    S.P. Martin, arXiv:hep-ph/9709356v5 (2008)Google Scholar
  5. 5.
    Nima Arkani-Hamed, Savas Dimopoulos, Gia Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429(3–4), 263–272 (1998)ADSGoogle Scholar
  6. 6.
    P. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–322 (1964)MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–532 (1963)ADSCrossRefGoogle Scholar
  9. 9.
    M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)ADSCrossRefGoogle Scholar
  10. 10.
    ALEPH Collaboration, CDF Collaboration, D0 Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD Collaboration, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD electroweak heavy flavour groups, arXiv:1012.2367[hep-ex] (2011) (unpublished)Google Scholar
  11. 11.
    R. Barate et al., Search for the standard model higgs boson at lep. Phys. Lett. B 565, 61–75 (2003)CrossRefGoogle Scholar
  12. 12.
    TEVNPH (Tevatron New Phenomena and Higgs Working Group), CDF and D0 Collaboration, arXiv:1107.5518[hep-ex] (2011( (unpublished)Google Scholar
  13. 13.
    ATLAS and CMS Collaborations, ATLAS-CONF-2011-157, CMS PAS HIG-11-023 (2011) (unpublished)Google Scholar
  14. 14.
    J. Alcaraz et al., Latest plots from the LEP Electroweak Working Group, July, 2011Google Scholar
  15. 15.
    S. Bethke, The 2009 world average of \(\alpha _s\). Eur. Phys. J. C 64, 689–703 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Sidney D. Drell, Tung-Mow Yan, Massive lepton-pair production in hadron-hadron collisions at high energies. Phys. Rev. Lett. 25, 316–320 (1970)ADSCrossRefGoogle Scholar
  17. 17.
    J. Collins, D. Soper, G. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production. Nucl. Phys. B 250, 199–224 (1985)Google Scholar
  18. 18.
    H. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    A. Martin, W. Stirling, R. Thorne, G. Watt, Parton distributions for the lhc. Eur. Phys. J. C 63, 189–285 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)Google Scholar
  21. 21.
    G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)ADSCrossRefGoogle Scholar
  22. 22.
    Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)ADSGoogle Scholar
  23. 23.
    T. Kinoshita, J. Math. Phys. 3, 650 (1962)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    T.D. Lee, M. Nauenberg, Phys. Rev. 133, 1549 (1964)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    N. Nakanishi, Progress Theoret. Phys. 19, 159 (1958)ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    G. Bozzi, S. Catani, G. Ferrera, D. de Florian, M. Grazzini. Production of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy. Phys. Lett. B 696, 207 (2011)Google Scholar
  27. 27.
    Y.L. Dokshitzer, D. Diakonov, S.I. Troyan, Phys. Lett. B 79, 269–272 (1978)ADSCrossRefGoogle Scholar
  28. 28.
    G. Altarelli, G. Parisi, R. Petronzio, Phys. Lett. B 76, 356 (1978)ADSCrossRefGoogle Scholar
  29. 29.
    G. Parisi, R. Petronzio, Nucl. Phys. B 154, 427 (1979)ADSCrossRefGoogle Scholar
  30. 30.
    C.T.H. Davies, W.J. Stirling, Nucl. Phys. B 244, 337 (1984)ADSCrossRefGoogle Scholar
  31. 31.
    C.T.H. Davies, B.R. Webber, W.J. Stirling, Nucl. Phys. B 256, 413 (1985)ADSCrossRefGoogle Scholar
  32. 32.
    F. Landry, R. Brock, P.N. Nadolsky, C.-P. Yuan, Fermilab tevatron run-1 z boson data and the collins-soper-sterman resummation formalism. Phys. Rev. D 67, 073016 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    C. Balazs, C.-P. Yuan, We use the CP version of the code and grid files. Phys. Rev. D 56, 5558–5583 (1997)Google Scholar
  34. 34.
    C. Adloff, Eur. Phys. J. C 12, 595 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    J. Breitweg et al., Phys. Lett. B 481, 199 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    P. Nadolsky, D.R. Stump, C.-P. Yuan, Phys. Rev. D 64, 114011 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    S. Berge, P. Nadolsky, F. Olness, C.-P. Yuan, Phys. Rev. D 72, 033015 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    G. Aad et al., Measurement of the transverse momentum distribution of bosons in protonproton collisions at with the atlas detector. Phys. Lett. B 705(5), 415–434 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    S. Chatrchyan et al., CMS Collaboration, arXiv:1110.4973[hep-ex] (2011)Google Scholar
  40. 40.
    T. Sjostrand, Comp. Phys. Commun. 135, 238 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    M. Bahr, Eur. Phys. J. C 58(4), 639–707 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    P. Nason, J. High Energy Phys. 0411, 40 (2004)ADSCrossRefGoogle Scholar
  43. 43.
    S. Frixione, P. Nason, C. Oleari, J. High Energy Phys. 0711, 70 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 29 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    M.L. Mangano, J. High Energy Phys. 07, 001 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    T. Gleisberg et al., Event generation with SHERPA 1.1. J. High Energy Phys. 02, 007 (2009)Google Scholar
  47. 47.
    A. Banfi, M. Dasgupta, R.M. Duran Delgado, The \(a_t\) distribution of the \(z\) boson at hadron colliders. J. High Energy Phys. 0912, 022 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    Andrea Banfi, Mrinal Dasgupta, Simone Marzani, QCD predictions for new variables to study dilepton transverse momenta at hadron colliders. Phys. Lett. B 701, 75–81 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    V.M. Abazov et al., Phys. Rev. D 78, 072002 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    T. Aaltonen et al., CDF note 10358, CDF (2010)Google Scholar
  51. 51.
    V.M. Abazov et al., Phys. Rev. D 84, 011103 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    T. Aaltonen et al., Phys. Rev. Lett. 98, 161801 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    V.M. Abazov et al., Phys. Lett. B 695, 67 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    T. Aaltonen et al., CDF note 10176, CDF (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.University of ManchesterManchesterUK

Personalised recommendations