Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 319 Accesses

Abstract

This thesis documents two analyses performed with the large sample of dielectron and dimuon events collected by the D0 detector at the Fermilab Tevatron. The first analysis takes a novel approach to the long studied Drell-Yan transverse momentum distribution, which probes higher order effects in Quantum chromodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the Plank scale quantum effects on gravity become significant. The Plank scale is defined as \(\Lambda _\mathrm{Plank} = (8\pi G_N)^{-1/2} \approx 10^{19}\) GeV, where \(G_N\) is the gravitational constant.

  2. 2.

    A right-(left-) handed particle has its spin and momentum vector pointing in the same (opposite) direction.

  3. 3.

    All exclusions that are quoted in this section are at 95 % C.L.

  4. 4.

    The matching procedure must ensure that perturbative terms are not double counted by the fixed order and resummed calculations.

  5. 5.

    The underlying event is activity that is not associated with the hard parton-parton scattering, e.g., the hadron remnants or multiple parton scattering.

  6. 6.

    This measurement was translated from the observable \(ZZ/\gamma ^*\) cross section to a “pure” \(ZZ\) cross section.

References

  1. S.L. Glashow, Partial-symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)

    Article  Google Scholar 

  2. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)

    Article  ADS  Google Scholar 

  3. A. Salam, Weak and electromagnetic interactions, ed. by N. Svartholm. Proceedings of the 8th Nobel Symposium on Elementary Particle Theory, Relativistic Groups and Analyticity, Stockholm, Sweden, 1968, pp. 367–377, 1969

    Google Scholar 

  4. S.P. Martin, arXiv:hep-ph/9709356v5 (2008)

    Google Scholar 

  5. Nima Arkani-Hamed, Savas Dimopoulos, Gia Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429(3–4), 263–272 (1998)

    ADS  Google Scholar 

  6. P. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  7. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–322 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  8. N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–532 (1963)

    Article  ADS  Google Scholar 

  9. M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973)

    Article  ADS  Google Scholar 

  10. ALEPH Collaboration, CDF Collaboration, D0 Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD Collaboration, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD electroweak heavy flavour groups, arXiv:1012.2367[hep-ex] (2011) (unpublished)

    Google Scholar 

  11. R. Barate et al., Search for the standard model higgs boson at lep. Phys. Lett. B 565, 61–75 (2003)

    Article  Google Scholar 

  12. TEVNPH (Tevatron New Phenomena and Higgs Working Group), CDF and D0 Collaboration, arXiv:1107.5518[hep-ex] (2011( (unpublished)

    Google Scholar 

  13. ATLAS and CMS Collaborations, ATLAS-CONF-2011-157, CMS PAS HIG-11-023 (2011) (unpublished)

    Google Scholar 

  14. J. Alcaraz et al., Latest plots from the LEP Electroweak Working Group, July, 2011

    Google Scholar 

  15. S. Bethke, The 2009 world average of \(\alpha _s\). Eur. Phys. J. C 64, 689–703 (2009)

    Article  ADS  Google Scholar 

  16. Sidney D. Drell, Tung-Mow Yan, Massive lepton-pair production in hadron-hadron collisions at high energies. Phys. Rev. Lett. 25, 316–320 (1970)

    Article  ADS  Google Scholar 

  17. J. Collins, D. Soper, G. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production. Nucl. Phys. B 250, 199–224 (1985)

    Google Scholar 

  18. H. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010)

    Article  ADS  Google Scholar 

  19. A. Martin, W. Stirling, R. Thorne, G. Watt, Parton distributions for the lhc. Eur. Phys. J. C 63, 189–285 (2009)

    Article  ADS  Google Scholar 

  20. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  21. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  22. Y.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  23. T. Kinoshita, J. Math. Phys. 3, 650 (1962)

    Article  ADS  MATH  Google Scholar 

  24. T.D. Lee, M. Nauenberg, Phys. Rev. 133, 1549 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  25. N. Nakanishi, Progress Theoret. Phys. 19, 159 (1958)

    Article  ADS  MATH  Google Scholar 

  26. G. Bozzi, S. Catani, G. Ferrera, D. de Florian, M. Grazzini. Production of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy. Phys. Lett. B 696, 207 (2011)

    Google Scholar 

  27. Y.L. Dokshitzer, D. Diakonov, S.I. Troyan, Phys. Lett. B 79, 269–272 (1978)

    Article  ADS  Google Scholar 

  28. G. Altarelli, G. Parisi, R. Petronzio, Phys. Lett. B 76, 356 (1978)

    Article  ADS  Google Scholar 

  29. G. Parisi, R. Petronzio, Nucl. Phys. B 154, 427 (1979)

    Article  ADS  Google Scholar 

  30. C.T.H. Davies, W.J. Stirling, Nucl. Phys. B 244, 337 (1984)

    Article  ADS  Google Scholar 

  31. C.T.H. Davies, B.R. Webber, W.J. Stirling, Nucl. Phys. B 256, 413 (1985)

    Article  ADS  Google Scholar 

  32. F. Landry, R. Brock, P.N. Nadolsky, C.-P. Yuan, Fermilab tevatron run-1 z boson data and the collins-soper-sterman resummation formalism. Phys. Rev. D 67, 073016 (2003)

    Article  ADS  Google Scholar 

  33. C. Balazs, C.-P. Yuan, We use the CP version of the code and grid files. Phys. Rev. D 56, 5558–5583 (1997)

    Google Scholar 

  34. C. Adloff, Eur. Phys. J. C 12, 595 (2000)

    Article  ADS  Google Scholar 

  35. J. Breitweg et al., Phys. Lett. B 481, 199 (2000)

    Article  ADS  Google Scholar 

  36. P. Nadolsky, D.R. Stump, C.-P. Yuan, Phys. Rev. D 64, 114011 (2001)

    Article  ADS  Google Scholar 

  37. S. Berge, P. Nadolsky, F. Olness, C.-P. Yuan, Phys. Rev. D 72, 033015 (2005)

    Article  ADS  Google Scholar 

  38. G. Aad et al., Measurement of the transverse momentum distribution of bosons in protonproton collisions at with the atlas detector. Phys. Lett. B 705(5), 415–434 (2011)

    Article  ADS  Google Scholar 

  39. S. Chatrchyan et al., CMS Collaboration, arXiv:1110.4973[hep-ex] (2011)

    Google Scholar 

  40. T. Sjostrand, Comp. Phys. Commun. 135, 238 (2001)

    Article  ADS  Google Scholar 

  41. M. Bahr, Eur. Phys. J. C 58(4), 639–707 (2008)

    Article  ADS  Google Scholar 

  42. P. Nason, J. High Energy Phys. 0411, 40 (2004)

    Article  ADS  Google Scholar 

  43. S. Frixione, P. Nason, C. Oleari, J. High Energy Phys. 0711, 70 (2007)

    Article  ADS  Google Scholar 

  44. S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 29 (2002)

    Article  ADS  Google Scholar 

  45. M.L. Mangano, J. High Energy Phys. 07, 001 (2003)

    Article  ADS  Google Scholar 

  46. T. Gleisberg et al., Event generation with SHERPA 1.1. J. High Energy Phys. 02, 007 (2009)

    Google Scholar 

  47. A. Banfi, M. Dasgupta, R.M. Duran Delgado, The \(a_t\) distribution of the \(z\) boson at hadron colliders. J. High Energy Phys. 0912, 022 (2009)

    Article  ADS  Google Scholar 

  48. Andrea Banfi, Mrinal Dasgupta, Simone Marzani, QCD predictions for new variables to study dilepton transverse momenta at hadron colliders. Phys. Lett. B 701, 75–81 (2011)

    Article  ADS  Google Scholar 

  49. V.M. Abazov et al., Phys. Rev. D 78, 072002 (2008)

    Article  ADS  Google Scholar 

  50. T. Aaltonen et al., CDF note 10358, CDF (2010)

    Google Scholar 

  51. V.M. Abazov et al., Phys. Rev. D 84, 011103 (2011)

    Article  ADS  Google Scholar 

  52. T. Aaltonen et al., Phys. Rev. Lett. 98, 161801 (2007)

    Article  ADS  Google Scholar 

  53. V.M. Abazov et al., Phys. Lett. B 695, 67 (2011)

    Article  ADS  Google Scholar 

  54. T. Aaltonen et al., CDF note 10176, CDF (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Vesterinen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vesterinen, M. (2012). Introduction and Theoretical Background. In: Z Boson Transverse Momentum Distribution, and ZZ and WZ Production. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30788-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30788-1_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30787-4

  • Online ISBN: 978-3-642-30788-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics