Lumping and Reversed Processes in Cooperating Automata

  • Simonetta Balsamo
  • Gian-Luca Dei Rossi
  • Andrea Marin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7314)


Performance evaluation of computer software or hardware architectures may rely on the analysis of a complex stochastic model whose specification is usually given in terms of a high level formalism such as queueing networks, stochastic Petri nets, stochastic Automata or Markovian process algebras. Compositionality is a key-feature of many of these formalisms and allows the modeller to combine several (simple) components to form a complex architecture. However, although these formalisms allow for relative compact specifications of possibly complex models, the derivation of the interested performance indices may be very time and space consuming since the set of possible states of the model tends to grow exponentially with the number of components.

In this paper we focus on models with underlying continuous time Markov chains and we show sufficient conditions under which exact lumping of the forward or the reversed process can be derived, allowing the exact computation of marginal stationary probabilities of the cooperating components. The peculiarity of our method relies on the fact that lumping is applied at component-level rather than to the CTMC of the joint process, thus reducing both the memory requirement and the computational cost of the subsequent solution of the model.


Markov Chain Marginal Distribution Negative Customer Stochastic Automaton High Level Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balsamo, S., Iazeolla, G.: An extension of Norton’s theorem for queueing networks. IEEE Trans. on Software Eng. SE-8, 298–305 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Buchholz, P.: Adaptive decomposition and approximation for the analysis of stochastic Petri nets. Perf. Eval. 56, 23–52 (2004)CrossRefGoogle Scholar
  3. 3.
    Buchholz, P.: Bounding stationary results of tandem networks with MAP input and MAP service time distributions. In: Proc. of ACM SIGMETRICS/PERFORMANCE, Saint Malo, FR, pp. 191–202 (2006)Google Scholar
  4. 4.
    Buchholz, P.: Product form approximations for communicating Markov processes. Perf. Eval. 67(9), 797–815 (2010), special Issue: QEST 2008CrossRefGoogle Scholar
  5. 5.
    Chandy, K.M., Herzog, U., Woo, L.: Parametric analysis of queueing networks. IBM Journal of Res. and Dev. 1(1), 36–42 (1975)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Courtois, P.J., Semal, P.: Bounds for the positive eigenvectors of nonnegative matrices and for their approximations by decomposition. J. of the ACM 31(4), 804–825 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Courtois, P.: Decomposability. Academic Press, New York (1977)zbMATHGoogle Scholar
  8. 8.
    Economou, A.: Generalized product-form stationary distributions for Markov chains in random environment with queueing application. Adv. in Appl. Prob. 37, 185–211 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fourneau, J.M., Plateau, B., Stewart, W.J.: Product form for stochastic automata networks. In: ValueTools 2007: Proc. of the 2nd International Conference on Performance Evaluation Methodologies and Tools, pp. 1–10. ICST, Brussels (2007)Google Scholar
  10. 10.
    Franceschinis, G., Muntz, R.R.: Bounds for quasi-lumpable markov chains. Elsevier Perf. Eval. 20(1-3), 223–243 (1994)CrossRefGoogle Scholar
  11. 11.
    Gelenbe, E.: Product form networks with negative and positive customers. J. of Appl. Prob. 28(3), 656–663 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process Algebra Based Approach to Performance Modelling. In: Haring, G., Kotsis, G. (eds.) TOOLS 1994. LNCS, vol. 794, pp. 353–368. Springer, Heidelberg (1994)Google Scholar
  13. 13.
    Gilmore, S., Hillston, J., Ribaudo, M.: An Efficient Algorithm for Aggregating PEPA Models. IEEE Trans. on Software Eng. 27(5), 449–464 (2001)CrossRefGoogle Scholar
  14. 14.
    Harrison, P.G.: Turning back time in Markovian process algebra. Theoretical Computer Science 290(3), 1947–1986 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Heindl, A.: Decomposition of general queueing networks with mmpp inputs and customer losses. Perf. Eval. 51(1-4), 117–136 (2003)CrossRefGoogle Scholar
  16. 16.
    Hillston, J.: A Compositional Approach to Performance Modelling. Ph.D. thesis, Department of Computer Science, University of Edinburgh (1994)Google Scholar
  17. 17.
    Kelly, F.: Reversibility and stochastic networks. Wiley, New York (1979)zbMATHGoogle Scholar
  18. 18.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains, ch. II. D. Van Nostrand Company, Inc. (1960)Google Scholar
  19. 19.
    Lavenberg, S.S.: Computer Performance Modeling Handbook. Academic Press, New York (1983)zbMATHGoogle Scholar
  20. 20.
    Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. on Comput. 31(9), 913–917 (1982)CrossRefGoogle Scholar
  21. 21.
    Plateau, B.: On the stochastic structure of parallelism and synchronization models for distributed algorithms. SIGMETRICS Perform. Eval. Rev. 13(2), 147–154 (1985)CrossRefGoogle Scholar
  22. 22.
    Stewart, G.: Computable error bounds for aggregated Markov chains. J. of the ACM 30(2), 271–285 (1983)zbMATHCrossRefGoogle Scholar
  23. 23.
    Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, UK (1994)zbMATHGoogle Scholar
  24. 24.
    Valmari, A., Franceschinis, G.: Simple O(m logn) Time Markov Chain Lumping. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Simonetta Balsamo
    • 1
  • Gian-Luca Dei Rossi
    • 1
  • Andrea Marin
    • 1
  1. 1.Dipartimento di Scienze Ambientali, Informatica e StatisticaUniversità Ca’ Foscari di VeneziaVeneziaItaly

Personalised recommendations