Personalized Healthcare Self-management Using Social Persuasion

  • Hamid Mukhtar
  • Arshad Ali
  • Sungyoung Lee
  • Djamel Belaïd
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7251)


In this article we propose our framework for healthcare self-management that combines ubiquitous and social computing as persuasion media. The framework enables social interactions between the patients, doctors, and other users in their online social community through a web portal as well as through their smartphones. To help users in adopting healthy behavior, they are monitored for various activities and persuaded using different persuasion strategies that are adaptive and are according to user’s behavior. Persuasion strategies are applied using persuasion profile of a user. A behavior model of each user is created that is based on Fogg’s behavior model but also encompasses user preferences, health profile and social profile.


Behavior Model Target Behavior Healthcare Management Social Computing Persuasive Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fogg, B.: Persuasive Technology: Using Computers to Change What We Think and Do (Interactive Technologies). Morgan Kaufmann (2002)Google Scholar
  2. 2.
    Olofsson, E.: Wellness applications: Design guidelines to encourage physical activity. In: USCCS 2010, p. 111 (2010)Google Scholar
  3. 3.
    Kimura, H., Ebisui, J., Funabashi, Y., Yoshii, A., Nakajima, T.: idetective: a persuasive application to motivate healthier behavior using smart phone. In: Proceedings of the 2011 ACM Symposium on Applied Computing, SAC 2011, pp. 399–404. ACM, New York (2011)CrossRefGoogle Scholar
  4. 4.
    Albaina, I., Visser, T., van der Mast, C., Vastenburg, M.: Flowie: A persuasive virtual coach to motivate elderly individuals to walk. In: 3rd International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2009, pp. 1–7. IEEE (2009)Google Scholar
  5. 5.
    Romero, N., Sturm, J., Bekker, T., De Valk, L., Kruitwagen, S.: Playful persuasion to support older adults’ social and physical activities. Interacting with Computers 22(6), 485–495 (2010)CrossRefGoogle Scholar
  6. 6.
    Torsi, S., Wright, P., Mawson, S., Mountain, G., Nasr, N., Rosser, B.: The self-management of chronic illnesses: Theories and technologies. In: 2010 4th International Conference on-NO PERMISSIONS, Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 1–4. IEEE (2010)Google Scholar
  7. 7.
    Fogg, B.J., Iizawa, D.: Online Persuasion in Facebook and Mixi: A Cross-Cultural Comparison. In: Oinas-Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., Øhrstrøm, P. (eds.) PERSUASIVE 2008. LNCS, vol. 5033, pp. 35–46. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Nijland, N.: Factors influencing the use of a web-based application for supporting the self-care of patients with type 2 diabetes: A longitudinal study. J. Med. Internet Res. 13(3), e71 (2011)Google Scholar
  9. 9.
    Serban, C., Perju, A., Macovei, O.: Using the online environment as a strategic tool in social communication campaigns: A case study regarding school dropout prevention programs in romania. African Journal of Business Management 5(22), 9623–9634 (2011)Google Scholar
  10. 10.
    Lehto, T.: Persuasive features in web-based alcohol and smoking interventions: A systematic review of the literature. J. Med. Internet Res. 13(3), e46 (2011)Google Scholar
  11. 11.
    Zhang, D., Yu, Z., Chin, C.: Context-aware infrastructure for personalized healthcare. Studies in Health Technology and Informatics 117, 154–163 (2005)Google Scholar
  12. 12.
    Fogg, B.: A behavior model for persuasive design. In: Proceedings of the 4th International Conference on Persuasive Technology, p. 40. ACM (2009)Google Scholar
  13. 13.
    Ajzen, I.: The theory of planned behavior. Organizational Behavior and Human Decision Processes 50(2), 179–211 (1991)CrossRefGoogle Scholar
  14. 14.
    Fogg, B.J.: Mass Interpersonal Persuasion: An Early View of a New Phenomenon. In: Oinas-Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., Øhrstrøm, P. (eds.) PERSUASIVE 2008. LNCS, vol. 5033, pp. 23–34. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Cialdini, R.: The science of persuasion. Scientific American Mind (2004)Google Scholar
  16. 16.
    Whalen, J.: Persuasive design: Putting it to use. Bulletin of the American Society for Information Science and Technology 37(6), 16–21 (2011)CrossRefGoogle Scholar
  17. 17.
    Strecher, V.: Internet methods for delivering behavioral and health-related interventions (ehealth). Annu. Rev. Clin. Psychol. 3, 53–76 (2007)CrossRefGoogle Scholar
  18. 18.
    Chi, P.Y(P.), Chen, J.-H., Chu, H.-H., Lo, J.-L.: Enabling Calorie-Aware Cooking in a Smart Kitchen. In: Oinas-Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., Øhrstrøm, P. (eds.) PERSUASIVE 2008. LNCS, vol. 5033, pp. 116–127. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Harjumaa, M., Segerståhl, K., Oinas-Kukkonen, H.: Understanding persuasive software functionality in practice: a field trial of polar ft60. In: Proceedings of the 4th International Conference on Persuasive Technology, p. 2. ACM (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hamid Mukhtar
    • 1
  • Arshad Ali
    • 1
  • Sungyoung Lee
    • 2
  • Djamel Belaïd
    • 3
  1. 1.National University of Sciences & Technology (NUST)IslamabadPakistan
  2. 2.Department of Computer EngineeringKyung Hee UniversitySouth Korea
  3. 3.CNRS UMR SAMOVARInstitut Telecom; Telecom SudParisEvry CedexFrance

Personalised recommendations