Advertisement

Palatal Wound Healing: The Effects of Scarring on Growth

  • Johannes W. Von den Hoff
  • Jaap C. Maltha
  • Anne Marie Kuijpers-Jagtman
Chapter

Abstract

Cleft palate patients often develop growth disturbances of the midfacial region after primary surgery. This is mainly caused by wound contraction and scar formation on the palate. The chapter gives an overview of the wound healing process with emphasis on wound contraction and scar formation. Some specific features of the palatal wound healing process are highlighted. Further, the effects of palatal repair on growth of the maxilla and development of the dentition are reviewed, as well as possible means to improve the clinical outcome. This review is based on clinical evaluations, experimental research in animal models, and on in vitro experiments using cell culturing and tissue engineering techniques.

Keywords

Cleft Palate Wound Healing Process Growth Disturbance Composite Graft Wound Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. al-Khateeb T, Stephens P, Shepherd JP, Thomas DW (1997) An investigation of preferential fibroblast wound repopulation using a novel in vitro wound model. J Periodontol 68(11):1063–1069PubMedCrossRefGoogle Scholar
  2. Bardach J (1989) Lip repair and facial growth in beagles. Plast Reconstr Surg 83(6):1079–1080PubMedGoogle Scholar
  3. Bardach J (1990) The influence of cleft lip repair on facial growth. Cleft Palate J 27(1):76–78PubMedCrossRefGoogle Scholar
  4. Bardach J, Eisbach KJ (1977) The influence of primary unilateral cleft lip repair on facial growth. Cleft Palate J 14(1):88–97PubMedGoogle Scholar
  5. Bardach J, Klausner EC, Eisbach KJ (1979) The relationship between lip pressure and facial growth after cleft lip repair: an experimental study. Cleft Palate J 16(2):137–146PubMedGoogle Scholar
  6. Bardach J, Roberts DM, Yale R, Rosewall D, Mooney M (1980) The influence of simultaneous cleft lip and palate repair on facial growth in rabbits. Cleft Palate J 17(4):309–318PubMedGoogle Scholar
  7. Bardach J, Kelly KM, Salyer KE (1993) A comparative study of facial growth following lip and palate repair performed in sequence and simultaneously: an experimental study in beagles. Plast Reconstr Surg 91(6):1008–1016PubMedCrossRefGoogle Scholar
  8. Berkowitz S (1977) Cleft lip and palate research: an updated state of the art. Section III. Orofacial growth and dentistry. Cleft Palate J 14(4):288–301PubMedGoogle Scholar
  9. Bodner L, Grossman N (2003) Autologous cultured mucosal graft to cover large intraoral mucosal defects: a clinical study. J Oral Maxillofac Surg 61(2):169–173PubMedCrossRefGoogle Scholar
  10. Bourke KA, Haase H, Li H, Daley T, Bartold PM (2000) Distribution and synthesis of elastin in porcine gingiva and alveolar mucosa. J Periodontal Res 35(6):361–368PubMedCrossRefGoogle Scholar
  11. Butler CE, Navarro FA, Park CS, Orgill DP (2002) Regeneration of neomucosa using cell-seeded collagen-GAG matrices in athymic mice. Ann Plast Surg 48(3):298–304PubMedCrossRefGoogle Scholar
  12. Capelozza Filho L, Normando AD, da Silva Filho OG (1996) Isolated influences of lip and palate surgery on facial growth: comparison of operated and unoperated male adults with UCLP. Cleft Palate Craniofac J 33(1):51–56PubMedCrossRefGoogle Scholar
  13. Chu S, Ishikawa H, Kim T, Yoshida S (2000) Analysis of scar tissue distribution on rat palates: a laser Doppler flowmetric study. Cleft Palate Craniofac J 37(5):488–496PubMedCrossRefGoogle Scholar
  14. Clark RAF (1996) Wound repair: overview and general considerations. In: Clark RAF (ed) The molecular and cellular biology of wound healing. Plenum Press, New York, pp 3–35Google Scholar
  15. Cooper ML, Andree C, Hansbrough JF, Zapata-Sirvent RL, Spielvogel RL (1993) Direct comparison of a cultured composite skin substitute containing human keratinocytes and fibroblasts to an epidermal sheet graft containing human keratinocytes on athymic mice. J Invest Dermatol 101(6):811–819PubMedCrossRefGoogle Scholar
  16. Cornelissen AM, Maltha JC, Von den Hoff HW, Kuijpers-Jagtman AM (1999) Palatal mucoperiosteal wound healing in the rat. Eur J Oral Sci 107(5):344–351PubMedCrossRefGoogle Scholar
  17. Cornelissen AM, Maltha JC, Von den Hoff JW, Kuijpers-Jagtman AM (2000a) Local injection of IFN-gamma reduces the number of myofibroblasts and the collagen content in palatal wounds. J Dent Res 79(10):1782–1788PubMedCrossRefGoogle Scholar
  18. Cornelissen AM, Stoop R, Von den Hoff HW, Maltha JC, Kuijpers-Jagtman AM (2000b) Myofibroblasts and matrix components in healing palatal wounds in the rat. J Oral Pathol Med 29(1):1–7PubMedCrossRefGoogle Scholar
  19. Dahl E (1970) Craniofacial morphology in congenital clefts of the lip and palate. An x-ray cephalometric study of young adult males. Acta Odontol Scand 28(Suppl 57):11+PubMedGoogle Scholar
  20. Derijcke A, Kuijpers-Jagtman AM, Lekkas C, Hardjowasito W, Latief B (1994) Dental arch dimensions in unoperated adult cleft-palate patients: an analysis of 37 cases. J Craniofac Genet Dev Biol 14(1):69–74PubMedGoogle Scholar
  21. Desmouliere A, Gabbiani G (1996) The role of the myofibroblast in wound healing and fibrocontractive diseases. In: Clark RAF (ed) The molecular and cellular biology of wound healing. Plenum Press, New York, pp 391–414Google Scholar
  22. Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146(1):56–66PubMedGoogle Scholar
  23. Duncan MR, Hasan A, Berman B (1995) Pentoxifylline, pentifylline, and interferons decrease type I and III procollagen mRNA levels in dermal fibroblasts: evidence for mediation by nuclear factor 1 down-regulation. J Invest Dermatol 104(2):282–286PubMedCrossRefGoogle Scholar
  24. Ehrlich HP, Rajaratnam JB (1990) Cell locomotion forces versus cell contraction forces for collagen lattice contraction: an in vitro model of wound contraction. Tissue Cell 22(4):407–417PubMedCrossRefGoogle Scholar
  25. El Ghalbzouri A, Hensbergen P, Gibbs S, Kempenaar J, van der Schors R, Ponec M (2004) Fibroblasts facilitate re-epithelialization in wounded human skin equivalents. Lab Invest 84(1):102–112PubMedCrossRefGoogle Scholar
  26. Fujioka M, Fujii T (1997) Maxillary growth following atelocollagen implantation on mucoperiosteal denudation of the palatal process in young rabbits: implications for clinical cleft palate repair. Cleft Palate Craniofac J 34(4):297–308PubMedCrossRefGoogle Scholar
  27. Funato N, Moriyama K, Baba Y, Kuroda T (1999) Evidence for apoptosis induction in myofibroblasts during palatal mucoperiosteal repair. J Dent Res 78(9):1511–1517PubMedCrossRefGoogle Scholar
  28. Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200(4):500–503PubMedCrossRefGoogle Scholar
  29. Graber TM (1949) Craniofacial morphology in cleft palate and cleft lip deformities. Surg Gynecol Obstet 88(3):359–369PubMedGoogle Scholar
  30. Granstein RD, Deak MR, Jacques SL, Margolis RJ, Flotte TJ, Whitaker D, Long FH, Amento EP (1989) The systemic administration of gamma interferon inhibits collagen synthesis and acute inflammation in a murine skin wounding model. J Invest Dermatol 93(1):18–27PubMedCrossRefGoogle Scholar
  31. Graves DT, Nooh N, Gillen T, Davey M, Patel S, Cottrell D, Amar S (2001) IL-1 plays a critical role in oral, but not dermal, wound healing. J Immunol 167(9):5316–5320PubMedGoogle Scholar
  32. Grinnell F (1994) Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124(4):401–404PubMedCrossRefGoogle Scholar
  33. Huang D, Chang TR, Aggarwal A, Lee RC, Ehrlich HP (1993) Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann Biomed Eng 21(3):289–305PubMedCrossRefGoogle Scholar
  34. Igarashi M, Irwin CR, Locke M, Mackenzie IC (2003) Construction of large area organotypical cultures of oral mucosa and skin. J Oral Pathol Med 32(7):422–430PubMedCrossRefGoogle Scholar
  35. In de Braekt MM, van Alphen FA, Kuijpers-Jagtman AM, Maltha JC (1992) Wound healing and wound contraction after palatal surgery and implantation of poly-(L-lactic) acid membranes in beagle dogs. J Oral Maxillofac Surg 50(4):359–364; discussion 365–356CrossRefGoogle Scholar
  36. Irwin CR, Myrillas T, Smyth M, Doogan J, Rice C, Schor SL (1998) Regulation of fibroblast-induced collagen gel contraction by interleukin-1beta. J Oral Pathol Med 27(6):255–259PubMedCrossRefGoogle Scholar
  37. Izumi K, Feinberg SE, Iida A, Yoshizawa M (2003) Intraoral grafting of an ex vivo produced oral mucosa equivalent: a preliminary report. Int J Oral Maxillofac Surg 32(2):188–197PubMedCrossRefGoogle Scholar
  38. Jansen RG, van Kuppevelt TH, Daamen WF, Kuijpers-Jagtman AM, Von den Hoff JW (2009) FGF-2-loaded collagen scaffolds attract cells and blood vessels in rat oral mucosa. J Oral Pathol Med 38(8):630–638PubMedCrossRefGoogle Scholar
  39. Kaban LB, Dodson TB, Longaker MT, Stern M, Umeda H, Adzick S (1993) Fetal cleft lip repair in rabbits: long-term clinical and cephalometric results. Cleft Palate Craniofac J 30(1):13–21PubMedCrossRefGoogle Scholar
  40. Kanda T, Funato N, Baba Y, Kuroda T (2003) Evidence for fibroblast growth factor receptors in myofibroblasts during palatal mucoperiosteal repair. Arch Oral Biol 48(3):213–221PubMedCrossRefGoogle Scholar
  41. Kim T, Ishikawa H, Chu S, Handa A, Iida J, Yoshida S (2002) Constriction of the maxillary dental arch by mucoperiosteal denudation of the palate. Cleft Palate Craniofac J 39(4):425–431PubMedCrossRefGoogle Scholar
  42. Kremenak CR Jr, Huffman WC, Olin WH (1970) Maxillary growth inhibition by mucoperiosteal denudation of palatal shelf bone in non-cleft beagles. Cleft Palate J 7:817–825PubMedGoogle Scholar
  43. Kuijpers-Jagtman AM, Long RE Jr (2000) State of the art: the influence of surgery and orthopedic treatment on maxillofacial growth and maxillary arch dimensions in patients treated for orofacial clefts. Cleft Palate Craniofac J 37:527/1–527/12Google Scholar
  44. Lambrecht JT, Kreusch T, Schulz L (2000) Position, shape, and dimension of the maxilla in unoperated cleft lip and palate patients: review of the literature. Clin Anat 13(2):121–133PubMedCrossRefGoogle Scholar
  45. Lee HG, Eun HC (1999) Differences between fibroblasts cultured from oral mucosa and normal skin: implication to wound healing. J Dermatol Sci 21(3):176–182PubMedCrossRefGoogle Scholar
  46. Leenstra TS, Kuijpers-Jagtman AM, Maltha JC, Freihofer HP (1995a) Palatal surgery without denudation of bone favours dentoalveolar development in dogs. Int J Oral Maxillofac Surg 24(6):440–444PubMedCrossRefGoogle Scholar
  47. Leenstra TS, Maltha JC, Kuijpers-Jagtman AM, Spauwen PH (1995b) Wound healing in beagle dogs after palatal repair without denudation of bone. Cleft Palate Craniofac J 32(5):363–369; discussion 369–370PubMedCrossRefGoogle Scholar
  48. Leenstra TS, Kohama G, Kuijpers-Jagtman AM, Freihofer HP (1996) Supraperiosteal flap technique versus mucoperiosteal flap technique in cleft palate surgery. Cleft Palate Craniofac J 33(6):501–506PubMedCrossRefGoogle Scholar
  49. Leenstra TS, Kuijpers-Jagtman AM, Maltha JC (1998) The healing process of palatal tissues after palatal surgery with and without implantation of membranes: an experimental study in dogs. J Mater Sci Mater Med 9(5):249–255PubMedCrossRefGoogle Scholar
  50. Lepekhin E, Gron B, Berezin V, Bock E, Dabelsteen E (2002) Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts. Eur J Oral Sci 110(1):13–20PubMedCrossRefGoogle Scholar
  51. Li J, Farthing PM, Ireland GW, Thornhill MH (1996) IL-1 alpha and IL-6 production by oral and skin keratinocytes: similarities and differences in response to cytokine treatment in vitro. J Oral Pathol Med 25(4):157–162PubMedCrossRefGoogle Scholar
  52. Liu J, Lamme EN, Steegers-Theunissen RP, Krapels IP, Bian Z, Marres H, Spauwen PH, Kuijpers-Jagtman AM, Von den Hoff JW (2008) Cleft palate cells can regenerate a palatal mucosa in vitro. J Dent Res 87(8):788–792PubMedCrossRefGoogle Scholar
  53. Liu J, Bian Z, Kuijpers-Jagtman AM, Von den Hoff JW (2010) Skin and oral mucosa equivalents: construction and performance. Orthod Craniofac Res 13(1):11–20PubMedCrossRefGoogle Scholar
  54. Longaker MT, Adzick NS (1991) The biology of fetal wound healing: a review. Plast Reconstr Surg 87(4):788–798PubMedCrossRefGoogle Scholar
  55. Mars M, Houston WJ (1990) A preliminary study of facial growth and morphology in unoperated male unilateral cleft lip and palate subjects over 13 years of age. Cleft Palate J 27(1):7–10PubMedCrossRefGoogle Scholar
  56. McGrath MH, Simon RH (1983) Wound geometry and the kinetics of wound contraction. Plast Reconstr Surg 72(1):66–73PubMedCrossRefGoogle Scholar
  57. McPherson JM (1992) The utility of collagen-based ­vehicles in delivery of growth factors for hard and soft tissue wound repair. Clin Mater 9(3–4):225–234PubMedCrossRefGoogle Scholar
  58. Mignatti P, Rifkin DB, Welgus HG, Parks WC (1996) Proteinases and tissue remodeling. In: Clark RAF (ed) The molecular and cellular biology of wound healing. Plenum Press, New York, pp 427–461Google Scholar
  59. Minabe M, Kodama T, Hori T, Watanabe Y (1989) Effects of atelocollagen on the wound healing reaction following palatal gingivectomy in rats. J Periodontal Res 24(3):178–185PubMedCrossRefGoogle Scholar
  60. Mio T, Adachi Y, Romberger DJ, Ertl RF, Rennard SI (1996) Regulation of fibroblast proliferation in three-dimensional collagen gel matrix. In Vitro Cell Dev Biol Anim 32(7):427–433PubMedCrossRefGoogle Scholar
  61. Molsted K (1999) Treatment outcome in cleft lip and palate: issues and perspectives. Crit Rev Oral Biol Med 10(2):225–239PubMedCrossRefGoogle Scholar
  62. Moriyama T, Asahina I, Ishii M, Oda M, Ishii Y, Enomoto S (2001) Development of composite cultured oral mucosa utilizing collagen sponge matrix and contracted collagen gel: a preliminary study for clinical applications. Tissue Eng 7(4):415–427PubMedCrossRefGoogle Scholar
  63. Nakato H, Kimata K (2002) Heparan sulfate fine structure and specificity of proteoglycan functions. Biochim Biophys Acta 1573(3):312–318PubMedCrossRefGoogle Scholar
  64. Nedelec B, Dodd CM, Scott PG, Ghahary A, Tredget EE (1998) Effect of interferon-alpha2b on guinea pig wound closure and the expression of cytoskeletal proteins in vivo. Wound Repair Regen 6(3):202–212PubMedCrossRefGoogle Scholar
  65. Nimni ME (1997) Polypeptide growth factors: targeted delivery systems. Biomaterials 18(18):1201–1225PubMedCrossRefGoogle Scholar
  66. Nukumi K, Masuda M, Obata A, Yumoto E (2004) Differences in expression of basic fibroblast growth factor during wound healing between oral mucosa and skin. Wound Repair Regen 12(1):A7CrossRefGoogle Scholar
  67. Oda Y, Kagami H, Ueda M (2004) Accelerating effects of basic fibroblast growth factor on wound healing of rat palatal mucosa. J Oral Maxillofac Surg 62(1):73–80PubMedCrossRefGoogle Scholar
  68. Okazaki M, Yoshimura K, Uchida G, Harii K (2002) Elevated expression of hepatocyte and keratinocyte growth factor in cultured buccal-mucosa-derived fibroblasts compared with normal-skin-derived fibroblasts. J Dermatol Sci 30(2):108–115PubMedCrossRefGoogle Scholar
  69. Ophof R, van Rheden RE, Von den HJ, Schalkwijk J, Kuijpers-Jagtman AM (2002) Oral keratinocytes cultured on dermal matrices form a mucosa-like tissue. Biomaterials 23(17):3741–3748PubMedCrossRefGoogle Scholar
  70. Ortiz-Monasterio F, Serrano A, Barrera G, Rodriguez-Hoffman H, Vinageras E (1966) A study of untreated adult cleft palate patients. Plast Reconstr Surg 38(1):36–41PubMedCrossRefGoogle Scholar
  71. Perko MA (1974) Primary closure of the cleft palate using a palatal mucosal flap: an attempt to prevent growth impairment. J Maxillofac Surg 2(1):40–43PubMedCrossRefGoogle Scholar
  72. Pomahac B, Svensjo T, Yao F, Brown H, Eriksson E (1998) Tissue engineering of skin. Crit Rev Oral Biol Med 9(3):333–344PubMedCrossRefGoogle Scholar
  73. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6(3):331–343PubMedCrossRefGoogle Scholar
  74. Rojas AI, Ahmed AR (1999) Adhesion receptors in health and disease. Crit Rev Oral Biol Med 10(3):337–358PubMedCrossRefGoogle Scholar
  75. Ross RB (1987a) Treatment variables affecting facial growth in complete unilateral cleft lip and palate, part 1:treatment affecting growth. Cleft Palate J 24(1):5–23PubMedGoogle Scholar
  76. Ross RB (1987b) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 2: presurgical orthopedics. Cleft Palate J 24(1):24–30Google Scholar
  77. Ross RB (1987c) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 3: alveolar repair and bone grafting. Cleft Palate J 24(1):33–44Google Scholar
  78. Ross RB (1987d) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 4: repair of the cleft lip. Cleft Palate J 24(1):45–53Google Scholar
  79. Ross RB (1987e) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 5: timing of palate repair. Cleft Palate J 24(1):54–63Google Scholar
  80. Ross RB (1987f) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 6: techniques of palate repair. Cleft Palate J 24(1):64–70Google Scholar
  81. Ross RB (1987g) Treatment variables affecting facial growth in complete unilateral cleft lip and palate. Part 7: an overview of treatment and facial growth. Cleft Palate J 24(1):71–77Google Scholar
  82. Rudolph R, Vande Berg J, Ehrlich HP (1992) Wound contraction and scar contracture. In: Cohen IK, Diegelman RT, Lindblad WJ (eds) Wound healing: biochemical and physical aspects. WB Saunders, Philadelphia, pp 96–114Google Scholar
  83. Rygh P, Tindlund R (1982) Orthopedic expansion and protraction of the maxilla in cleft palate patients–a new treatment rationale. Cleft Palate J 19(2):104–112PubMedGoogle Scholar
  84. Searls JC, Kremenak CR, Rittman BR (1979) Quantitative characterization of changes in cellularity and collagen fiber size in contracting palatal wounds. Cleft Palate J 16(4):373–380PubMedGoogle Scholar
  85. Semb G, Shaw WC (1996) Facial growth in orofacial clefting disorders. In: Turvey TA, Vig KWL, Fonseca RJ (eds) Facial clefts and craniosynostosis. Principles and management. WB Saunders, Philadelphia, pp 28–56Google Scholar
  86. Semb G, Shaw WC (1998) Facial growth after different methods of surgical intervention in patients with cleft lip and palate. Acta Odontol Scand 56(6):352–355PubMedCrossRefGoogle Scholar
  87. Shaw WC, Semb G, Nelson P, Brattström V, Prahl-Andersen B (2000) The Eurocleft project 1996–2000. Ios Press, AmsterdamGoogle Scholar
  88. Skalak R, Fox CF (1988) Preface. In: Skalak R, Fox CF (eds) Tissue engineering. Alan R Liss, New YorkGoogle Scholar
  89. Squier CA, Finkelstein MW (2003) Oral mucosa. In: Nanci A (ed) Ten Cate’s oral histology: development, structure, and function, 6th edn. Mosby, St. Louis, pp 329–375Google Scholar
  90. Stephens P, Davies KJ, al-Khateeb T, Shepherd JP, Thomas DW (1996) A comparison of the ability of intra-oral and extra-oral fibroblasts to stimulate extracellular matrix reorganization in a model of wound contraction. J Dent Res 75(6):1358–1364PubMedCrossRefGoogle Scholar
  91. Stephens P, Davies KJ, Occleston N, Pleass RD, Kon C, Daniels J, Khaw PT, Thomas DW (2001) Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity. Br J Dermatol 144(2):229–237PubMedCrossRefGoogle Scholar
  92. Sullivan WG (1989) In utero cleft lip repair in the mouse without an incision. Plast Reconstr Surg 84(5):723–730; discussion 731–722PubMedCrossRefGoogle Scholar
  93. Sumi Y, Hata KI, Sawaki Y, Mizuno H, Ueda M (1999) Clinical application of cultured oral epithelium for palatal wounds after palatoplasty: a preliminary report. Oral Dis 5(4):307–312PubMedCrossRefGoogle Scholar
  94. Szpaderska AM, Zuckerman JD, DiPietro LA (2003) Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res 82(8):621–626PubMedCrossRefGoogle Scholar
  95. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363PubMedCrossRefGoogle Scholar
  96. Tsai CY, Ueda M, Hata K, Horie K, Hibino Y, Sugimura Y, Toriyama K, Torii S (1997) Clinical results of cultured epithelial cell grafting in the oral and maxillofacial region. J Craniomaxillofac Surg 25(1):4–8PubMedCrossRefGoogle Scholar
  97. van Beurden HE, Snoek PA, Von den Hoff JW, Torensma R, Kuijpers-Jagtman AM (2003) Fibroblast subpopulations in intra-oral wound healing. Wound Repair Regen 11(1):55–63PubMedCrossRefGoogle Scholar
  98. Weinzweig J, Panter KE, Spangenberger A, Harper JS, McRae R, Edstrom LE (2002) The fetal cleft palate: III. Ultrastructural and functional analysis of palatal development following in utero repair of the congenital model. Plast Reconstr Surg 109(7):2355–2362PubMedCrossRefGoogle Scholar
  99. Wijdeveld MG, Grupping EM, Kuijpers-Jagtman AM, Maltha JC (1988) Growth of the maxilla after soft tissue palatal surgery at different ages in beagle dogs: a longitudinal radiographic study. J Oral Maxillofac Surg 46(3):204–209PubMedCrossRefGoogle Scholar
  100. Wijdeveld MG, Grupping EM, Kuijpers-Jagtman AM, Maltha JC (1989) Maxillary arch dimensions after palatal surgery at different ages on beagle dogs. J Dent Res 68(6):1105–1109PubMedCrossRefGoogle Scholar
  101. Wijdeveld MG, Maltha JC, Grupping EM, De Jonge J, Kuijpers-Jagtman AM (1991) A histological study of tissue response to simulated cleft palate surgery at different ages in beagle dogs. Arch Oral Biol 36(11):837–843PubMedCrossRefGoogle Scholar
  102. Williamson JS, Snelling CF, Clugston P, Macdonald IB, Germann E (1995) Cultured epithelial autograft: five years of clinical experience with twenty-eight patients. J Trauma 39(2):309–319PubMedCrossRefGoogle Scholar
  103. Yamada KM, Clark RAF (1996) Provisional matrix. In: Clark RAF (ed) The molecular and cellular biology of wound healing. Plenum Press, New York, pp 51–82Google Scholar
  104. Yokozeki M, Moriyama K, Shimokawa H, Kuroda T (1997) Transforming growth factor-beta 1 modulates myofibroblastic phenotype of rat palatal fibroblasts in vitro. Exp Cell Res 231(2):328–336PubMedCrossRefGoogle Scholar
  105. Zelles T, Purushotham KR, Macauley SP, Oxford GE, Humphreys-Beher MG (1995) Saliva and growth factors: the fountain of youth resides in us all. J Dent Res 74(12):1826–1832PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Johannes W. Von den Hoff
    • 1
  • Jaap C. Maltha
    • 1
  • Anne Marie Kuijpers-Jagtman
    • 2
  1. 1.Department of Orthodontics and Craniofacial BiologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands
  2. 2.Department of Orthodontics and Craniofacial Biology, Cleft Palate Craniofacial UnitRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations