Skip to main content

Energy Efficient Activity Recognition Based on Low Resolution Accelerometer in Smart Phones

  • Conference paper
Book cover Advances in Grid and Pervasive Computing (GPC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7296))

Included in the following conference series:

Abstract

Smart phone is becoming an ideal platform for continuous and transparent sensing with lots of built-in sensors. Activity recognition on smart phones is still a challenge due to the constraints of resources, such as battery lifetime, computational workload. Keeping in view the demand of low energy activity recognition for mobile devices, we propose an energy-efficient method to recognize user activities based on a single low resolution tri-axial accelerometer in smart phones. This paper presents a hierarchical recognition scheme with variable step size, which reduces the cost of time consuming frequency domain features for low energy consumption and adjusts the size of sliding window to improve the recognition accuracy. Experimental results demonstrate the effectiveness of the proposed algorithm with more than 85% recognition accuracy for 11 activities and 3.2 hours extended battery life for mobile phones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kawahara, Y., Ryu, N., Asami, T.: Monitoring Daily Energy Expenditure Using a 3-Axis Accelerometer with a Low-Power Microprocessor. International Journal on Human-Computer Interaction 1(5), 145–154 (2009)

    Google Scholar 

  2. Kim, E., Helal, S., Cook, D.: Human Activity Recognition and Pattern Discovery. IEEE Pervasive Computing 9(1), 48–53 (2010)

    Article  Google Scholar 

  3. Gu, T., Wang, L., Wu, Z., Tao, X., Lu, J.: A Pattern Mining Approach to Sensor-Based Human Activity Recognition. IEEE Transactions on Knowledge and Data Engineering 23(9), 1359–1372 (2011)

    Article  Google Scholar 

  4. Nijholt, A., Zwiers, J., Peciva, J.: Mixed reality participants in smart meeting rooms and smart home environments. Personal and Ubiquitous Computing 13(1), 85–94 (2009)

    Article  Google Scholar 

  5. Bouten, C., Koekkoek, K., Verduin, M., Kodde, R., Janssen, J.D.: A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Transactions on Biomedical Engineering 44(3), 136–147 (1997)

    Article  Google Scholar 

  6. Khan, A.M., Lee, Y., Lee, S.Y., Kim, T.: A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE Transactions on Information Technology in Biomedicine 14(5), 1166–1172 (2010)

    Article  Google Scholar 

  7. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity Recognition using Cell phone Accelerometers. ACM SIGKDD Explorations 12(2), 74–82 (2010)

    Article  Google Scholar 

  8. Maurer, U., Smailagic, A., Siewiorek, D.P., Deisher, M.: Activity Recognition and Monitoring Using Multiple Sensors on Different Body Positions. In: Proc. of International Workshop on Wearable and Implantable Body Sensor Networks, pp. 113–116 (2006)

    Google Scholar 

  9. Győrbíró, N., Fábián, Á., Hományi, G.: An Activity Recognition System for Mobile Phones. Mobile Networks and Applications 14(1), 82–91 (2009)

    Article  Google Scholar 

  10. Mannini, A., Sabatini, A.M.: Machine Learning Methods for classifying Human physical activity from on-body accelerometers. Sensor 10(2), 1154–1175 (2010)

    Article  Google Scholar 

  11. Krishnan, N.C., Juillard, C., Colbry, D.: Recognition of hand movements using wearable accelerometers. Journal of Ambient Intelligence and Smart Environments 1, 143–155 (2009)

    Google Scholar 

  12. Ruch, N., Rumo, M., Mader, U.: Recognition of activities in children by two uniaxial accelerometers in free-living conditions. European Journal of Applied Physiology 111(8), 1917–1927 (2011)

    Article  Google Scholar 

  13. Lee, M., Khan, A.M., Kim, J., Cho, Y., Kim, T.: A Single Tri-axial Accelerometer-based Real-time Personal Life Log System Capable of Activity Classification and Exercise Information Generation. In: Proc. of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1390–1393 (2010)

    Google Scholar 

  14. He, Z., Liu, Z., Jin, L., Zhen, L., Huang, J.: Light weightness Feature – A Novel Feature for single Tri-axial accelerometer based Activity Recognition. In: Proc. of 19th International Conference on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  15. Ravi, N., Dander, N., Mysore, P., Littman, M.L.: Activity Recognition from Accelerometer Data. In: Proc. of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, pp. 1541–1546 (2005)

    Google Scholar 

  16. Wang, Y., Lin, J., Annavaram, M., Quinn, J.A., Jason, H., Bhaskar, K., Sadeh, N.: A Framework of Energy Efficient Mobile Sensing for Automatic User State Recognition. In: Proc. of the 7th ACM International Conference on Mobile Systems, Applications, and Services, pp. 179–192 (2009)

    Google Scholar 

  17. Zappi, P., Lombriser, C., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Tröster, G.: Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection. In: Verdone, R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 17–33. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Li, X., Cao, H., Chen, E., Tian, J.: Learning to Infer the Status of Heavy-Duty Sensors for Energy Efficient Context-Sensing. ACM Transactions on Intelligent Systems and Technology (unpublished)

    Google Scholar 

  19. Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liang, Y., Zhou, X., Yu, Z., Guo, B., Yang, Y. (2012). Energy Efficient Activity Recognition Based on Low Resolution Accelerometer in Smart Phones. In: Li, R., Cao, J., Bourgeois, J. (eds) Advances in Grid and Pervasive Computing. GPC 2012. Lecture Notes in Computer Science, vol 7296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30767-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30767-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30766-9

  • Online ISBN: 978-3-642-30767-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics