Skip to main content

Part of the book series: Springer Theses ((Springer Theses,volume 4))

  • 1211 Accesses

Abstract

In this chapter, we present a procedure for clustering (unsupervised learning) data from a model based on mixtures of independent component analyzers. Clustering techniques have been extensively studied in many different fields for a long time. They can be organized in different ways according to several theoretical criteria. However, a rough widely accepted classification of these techniques is: hierarchical and partitional clustering; see for instance. Both clustering categories provide a division of the data objects. The hierarchical approach also yields a hierarchical structure from a sequence of partitions performed from singleton clusters to a cluster including all data objects (agglomerative or bottom-up strategy) or vice versa (divisive or top-down strategy). This structure consists of a binary tree (dendrogram) whose leaves are the data objects and whose internal nodes represent nested clusters of various sizes. The whole node of the dendrogram represents the whole data set. The internal nodes describe the extent that the objects are proximal to each other; and the height of the dendrogram usually represents the distance between each pair of objects or clusters, or an object and a cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Everitt, S. Landau, M. Leese, Cluster Analysis, 4th edn. (Arnold, London, 2001)

    MATH  Google Scholar 

  2. R. Xu, D. Wunsch, Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    Article  Google Scholar 

  3. D.T. Pham, A.A. Afify, Clustering techniques and their applications in engineering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 221(11), 1445–1459 (2007)

    Article  Google Scholar 

  4. G. Lance, W. Williams, A general theory of classification sorting strategies. 1. Hierarchical systems. Comput. J. 9(4), 373–380 (1967)

    Article  Google Scholar 

  5. A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Comput. Surv. 31(3) (1999)

    Google Scholar 

  6. C. Williams, A MCMC approach to hierarchical mixture modelling. Int. Conf. Neural Inf. Process. Sys. NIPS 13, 680–686 (1999)

    Google Scholar 

  7. R.M. Neal, Density modeling and clustering using Dirichlet diffusion trees. Bayesian Stat. 7, 619–629 (2003)

    MathSciNet  Google Scholar 

  8. C. Kemp, T.L. Griffiths, S. Stromsten, J.B. Tenenbaum, Semi-supervised learning with trees, Int. Conf. Neural Inf. Process. Sys. NIPS 17 (2003)

    Google Scholar 

  9. N. Vasconcelos, A. Lippman, Learning mixture hierarchies. Int. Conf. Neural Inf. Process. Sys. NIPS 12, 606–612 (1998)

    Google Scholar 

  10. A. Stolcke, S. Omohundro, Hidden Markov model induction by Bayesian model merging. Int. Conf. Neural Inf. Process. Sys. 6, 11–18 (1992)

    Google Scholar 

  11. J.D. Banfield, A.E. Raftery, Model-based Gaussian and non-gaussian clustering. Biometrics 43, 803–821 (1993)

    Article  MathSciNet  Google Scholar 

  12. S. Vaithyanathan, B. Dom, Model-based hierarchical clustering. Uncertain Artif. Intell. 16, 599–608 (2000)

    Google Scholar 

  13. E. Segal, D. Koller, D. Ormoneit, Probabilistic abstractions hierarchies. Int. Conf. Neural Inf. Process. Sys. NIPS 15, 913–920 (2001)

    Google Scholar 

  14. M.F. Ramoni, P. Sebastiani, I.S. Kohane, Cluster analysis of gene expression dynamics. Natl Acad Sci 99, 9121–9126 (2003)

    Article  MathSciNet  Google Scholar 

  15. N. Friedman, Pcluster: probabilistic agglomerative clustering of gene expression profiles. Technical report, vol 80 (Herbew University 2003)

    Google Scholar 

  16. K.A. Heller, Z. Ghahramani, Bayesian hierarchical clustering, ACM International Conference Proceeding Series. Proceedings of the 22nd international conference on Machine learning, vol 119 (Bonn, Germany, 2005), pp 297–304

    Google Scholar 

  17. C.M. Bishop, M.E. Tipping, A hierarchical latent variable model for data visualization. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 281–293 (1998)

    Article  Google Scholar 

  18. M.E. Tipping, C.M. Bishop, Probabilistic principal component analysis. J. R. Stat. Soc. Series B 61(3), 611–622 (1999)

    Google Scholar 

  19. M.E. Tipping, C.M. Bishop, Mixtures of probabilistic principal component analyzers, Neural Comput. 11(2), 443–482 (1999)

    Google Scholar 

  20. H.J. Park, T.W. Lee, Capturing nonlinear dependencies in natural images using ICA and mixture of Laplacian distribution. Neurocomputing 69, 1513–1528 (2006)

    Article  Google Scholar 

  21. D.J. Mackay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  22. F.R. Bach, M.I. Jordan, Beyond independent components: trees and clusters. J. Mach. Learn. Res. 3, 1205–1233 (2003)

    MathSciNet  Google Scholar 

  23. A. Hyvärinen, P.O. Hoyer, M. Inki, Topographic independent component analysis. Neural Comput. 13(7), 1527–1558 (2001)

    Article  MATH  Google Scholar 

  24. R.S. Raghavan, A method for estimating parameters of K-distributed clutter, IEEE Trans. Aerosp. Electron. Sys. 27(2), 268–275 (1991)

    Google Scholar 

  25. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Plenum Press, New York, 1981)

    Book  MATH  Google Scholar 

  26. A.J. Bell, T.J. Sejnowski, The “independent components” of natural scenes are edge filters. Vis. Res. 37(23), 3327–3338 (1997)

    Article  Google Scholar 

  27. J.H. Van Hateren, A. van der Shaaf, Independent component filters of natural images compared with simple cells in primary visual cortex. Proc R Soc Lond B 265, 359–366 (1998)

    Article  Google Scholar 

  28. Y. Matsuda, K. Yamaguchi, Linear multilayer ICA generating hierarchical edge detectors. Neural Comput. 19(1), 218–230 (2007)

    Article  MATH  Google Scholar 

  29. T.W. Lee, M.S. Lewicki, T.J. Sejnowski, ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1078–1089 (2000)

    Article  Google Scholar 

  30. T.S. Lee, D. Mumford, Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A 20(7), 1434–1448 (2003)

    Article  Google Scholar 

  31. S.A. Nene, S.K. Nayar, H. Murase, Columbia Object Image Library (COIL-100), Technical report CUCS-006-96, February (1996)

    Google Scholar 

  32. A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Addisson Salazar .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salazar, A. (2013). Hierarchical Clustering from ICA Mixtures. In: On Statistical Pattern Recognition in Independent Component Analysis Mixture Modelling. Springer Theses, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30752-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30752-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30751-5

  • Online ISBN: 978-3-642-30752-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics