Introduction

Chapter
Part of the Springer Theses book series (Springer Theses, volume 4)

Abstract

From our most early experiences with reality, we start to recognize patterns in the surrounding environment. This allows us as human beings to be aware of the different objects that we are related to. The scope of pattern recognition is broad since it is observed at different levels in the world. This awareness occurs for a cell that divides and specializes itself and for an expert standing in front of a painting trying to make a distinction between the pure object and the pure subject of that object.

Keywords

Hide Markov Model Independent Component Analysis Blind Source Separation Hierarchical Cluster Algorithm Independent Component Analysis Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.J.D.M. Verhagen, Some general remarks about pattern recognition: its definition; its relation with other disciplines; a literature survey. Pattern Recognit. 7(3), 109–116 (1975)MATHCrossRefGoogle Scholar
  2. 2.
    J.C. Bezdek, S.K. Pal, Fuzzy Models for Pattern Recognition: Methods That Search for Structures in Data (IEEE press, New York, 1992)Google Scholar
  3. 3.
    H.A. Simon, Science Seeks Parsimony, Not Simplicity: Searching for Pattern In Phenomena. in Simplicity, Inference and Modelling (Keeping it Sophisticatedly Simple), ed. by A. Zellner, H.A. Keuzenkamp, M. McAleer (Cambridge University Press, Cambridge, 2004)Google Scholar
  4. 4.
    V. Castelli, T.M. Cover, The relative value of labelled and unlabelled samples in pattern recognition with an unknown mixing parameter. IEEE Trans. Inf. Theory 42(6), 2102–2117 (1996)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    I. Cohen, F.G. Cozman, N. Sebe, M.C. Cirelo, T.S. Huang, Semisupervised learning of classifiers: theory, algorithms, and their application to human-computer interaction. IEEE Trans. Pattern Anal. Mach. Learn. 26(12), 1553–1567 (2004)CrossRefGoogle Scholar
  6. 6.
    O. Chapelle, B. Schölkopf, A Semi-supervised Learning (MIT Press, Zien, 2006)CrossRefGoogle Scholar
  7. 7.
    S. Haykin, Intelligent Signal Processing (Wiley-IEEE Press, New York, 2001)CrossRefGoogle Scholar
  8. 8.
    A.K. Jain, Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)CrossRefGoogle Scholar
  9. 9.
    A.R. Webb, Statistical Pattern Recognition (Wiley, New York, 2002)MATHCrossRefGoogle Scholar
  10. 10.
    T.W. Lee, M.S. Lewicki, T.J. Sejnowski, ICA mixture models for unsupervised classification of non-gaussian classes and automatic context switching in blind signal separation. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1078–1089 (2000)CrossRefGoogle Scholar
  11. 11.
    R. Choudrey, S. Roberts, Variational mixture of bayesian independent component analysers. Neural Comput. 15(1), 213–252 (2002)CrossRefGoogle Scholar
  12. 12.
    P. Comon, Independent component analysis—a new concept? Signal Process. 36(3), 287–314 (1994)MATHCrossRefGoogle Scholar
  13. 13.
    A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001)CrossRefGoogle Scholar
  14. 14.
    A. Cichocki, S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications (Wiley, New York, 2001)Google Scholar
  15. 15.
    T.W. Lee, Independent Component Analysis—Theory and Applications (Kluwer Academic Publishers, Boston, 1998)MATHGoogle Scholar
  16. 16.
    S. Roberts, R. Everson, Independent Component Analysis—Principles and Practice (Cambridge University Press, Cambridge, 2001)MATHGoogle Scholar
  17. 17.
    A. Cichocki, R. Zdunek, A.H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation (Wiley, New York, 2009)Google Scholar
  18. 18.
    P. Comon, C. Jutten (eds.), Handbook of Blind Source Separation Independent Component Analysis and Applications (Academic Press, Oxford, 2010)Google Scholar
  19. 19.
    V. Zarzoso, A. Nandi, Noninvasive fetal electrocardiogram extraction: blind separation versus adaptive noise cancellation. IEEE Trans. Biomed. Eng. 48(1), 12–18 (2001)CrossRefGoogle Scholar
  20. 20.
    J.J. Rieta, F. Castells, C. Sanchez, V. Zarzoso, Atrial activity extraction for atrial analysis using blind source separation. IEEE Trans. Biomed. Eng. 51(7), 1176–1186 (2004)CrossRefGoogle Scholar
  21. 21.
    R. Llinares, J. Igual, A. Salazar, A. Camacho, Semi-blind source extraction of atrial activity by combining statistical and spectral features. Digit. Signal Process. 21(2), 391–403 (2011)CrossRefGoogle Scholar
  22. 22.
    S. Makeig, J. Onton, in A Trial-by-Trial Pattern Approach to Event-Related EEG Analysis: ERP Features and EEG Dynamics: An ICA Perspective, ed. by S. Luck, E. Kappenman. Oxford Handbook of Event-Related Potential Components (Oxford University Press, Oxford, 2009)Google Scholar
  23. 23.
    D.M. Groppe, S. Makeig, M. Kutas, Identifying reliable independent components via split-half comparisons. Neuroimage 45, 1199–1211 (2009)CrossRefGoogle Scholar
  24. 24.
    Y. Karklin, M.S. Lewicki, Learning higher-order structures in natural images. Netw. Comput. Neural Syst. 14, 483–499 (2003)CrossRefGoogle Scholar
  25. 25.
    T.W. Lee, M.S. Lewicki, Unsupervised image classification, segmentation, and enhancement using ICA mixture models. IEEE Trans. Image Process. 11(3), 270–279 (2002)CrossRefGoogle Scholar
  26. 26.
    N.H. Mollah, M. Minami, S. Eguchi, Exploring latent structure of mixture ICA models by the Minimum ß-Divergence method. Neural Comput. 18, 166–190 (2005)CrossRefGoogle Scholar
  27. 27.
    C.A. Shah, M.K. Arora, P.K. Varshney, Unsupervised classification of hyperspectral data: an ICA mixture model based approach. Int. J. Remote Sens. 25(2), 481–487 (2004)CrossRefGoogle Scholar
  28. 28.
    C.A. Shah, P.K. Varshney, M.K. Arora, ICA mixture model algorithm for unsupervised classification of remote sensing imagery. Int. J. Remote Sens. 28(8), 1711–1731 (2007)CrossRefGoogle Scholar
  29. 29.
    U.M. Bae, T.W. Lee, S.Y. Lee, Blind signal separation in teleconferencing using the ICA mixture model. Electron. Lett. 37(7), 680–682 (2000)MathSciNetCrossRefGoogle Scholar
  30. 30.
    K. Chan, T.W. Lee, T.J. Sejnowski, Variational learning of clusters of undercomplete nonsymmetric independent components. J. Mach. Learn. Res. 3, 99–114 (2002)MathSciNetGoogle Scholar
  31. 31.
    M.H. Goldbaum, A.P.A. Sample, Z. Zhang, K. Chan, J. Hao, T.W. Lee, C. Boden, C. Bowd, R. Bourne, L. Zangwill, T. Sejnowski, D. Spinak, R.N. Weinreb, Using unsupervised learning with independent component analysis to identify patterns of glaucomatous visual field defects. Investig. Ophthalmol. Vis. Sci. 46(10), 3676–3683 (2005)CrossRefGoogle Scholar
  32. 32.
    T.P. Jung, S. Makeig, T.W. Lee, M. J. McKeown, G. Brown, A. J. Bell, T. J. Sejnowski, Independent component analysis of biomedical signals. Proceedings of the 2nd International Workshop on Independent Component Analysis and Signal Separation, pp. 633–644, 2000Google Scholar
  33. 33.
    C.T. Lin, W.C. Cheng, S.F. Liang, An on-line ICA-mixture-model-based self-constructing fuzzy neural network. IEEE Trans. Circuits Syst. 52(1), 207–221 (2005)MathSciNetCrossRefGoogle Scholar
  34. 34.
    X. Hu, A. Shimizu, H. Kobatake, S. Nawano, Aplying ICA mixture analysis for segmenting liver from multi-phase abdominal CT images. Lect. Notes Comput. Sci. 3150, 54–61 (2004)CrossRefGoogle Scholar
  35. 35.
    I. Guyon, A. Elisseeff, An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)MATHGoogle Scholar
  36. 36.
    L. Devroye, L. Györfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition (Springer, New York, 1996)MATHCrossRefGoogle Scholar
  37. 37.
    B.W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall, London, 1985)Google Scholar
  38. 38.
    D.J. Mackay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, Cambridge, 2004)Google Scholar
  39. 39.
    A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review. ACM Comput. Surv. 31(3) (1999)Google Scholar
  40. 40.
    M. Haldiki, Y. Batistakis, M. Vazirgiannis, On clustering validation techniques. J. Intell. Inf. Syst. 17(2–3), 107–145 (2001)Google Scholar
  41. 41.
    J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms (Plenum Press, New York, 1981)MATHCrossRefGoogle Scholar
  42. 42.
    J. Zeng, C. Wu, W. Wang, Multi-grain hierarchical topic extraction algorithm for text mining. Expert Syst. Appl. 37, 3202–3208 (2010)CrossRefGoogle Scholar
  43. 43.
    R. Navigli, Word sense disambiguation: a survey. ACM Comput. Surv. 41(2), 10:1–10:69 (2009)Google Scholar
  44. 44.
    H. Azzag, G. Venturini, A. Oliver, C. Guinot, A hierarchical ant based clustering algorithm and its use in three real-world applications. Eur. J. Oper. Res. 179, 906–922 (2007)MATHCrossRefGoogle Scholar
  45. 45.
    J.L. Seng, J.T. Lai, An Intelligent information segmentation approach to extract financial data for business valuation. Expert Syst. Appl. 37, 6515–6530 (2010)CrossRefGoogle Scholar
  46. 46.
    J.A. Vilar, A.M. Alonso, J.M. Vilar, Non-linear time series clustering based on non-parametric forecast densities. Comput. Stat. Data Anal. 54, 2850–2865 (2010)MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    B. Andreopoulos, A. An, X. Wang, M. Schroeder, A roadmap of clustering algorithms: finding a match for a biomedical application. Briefings Bioinf. 10(3), 297–314 (2009)CrossRefGoogle Scholar
  48. 48.
    D.T. Pham, A.A. Afify, Clustering techniques and their applications in engineering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 221(11), 1445–1459 (2007)CrossRefGoogle Scholar
  49. 49.
    S. Roweis, Z. Ghahramani, in Learning Nonlinear Dynamical Systems Using the EM Algorithm, ed. by S. Haykin. Kalman Filtering and Neural Networks (Wiley, New York, 2001), pp. 175–220Google Scholar
  50. 50.
    J.V. Candy, Bootstrap particle filtering. IEEE Signal Process. Mag. 24(4), 73–85 (2007)CrossRefGoogle Scholar
  51. 51.
    R. Chen, J.S. Liu, Mixture Kalman filters. J. Royal Stat. Soc. Ser. B 62, 493–508 (2000)MATHCrossRefGoogle Scholar
  52. 52.
    J. Zhou, X.P. Zhan, Hidden Markov Model Framework Using Independent Component Analysis Mixture Model. Proceedings of the 31st IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. V:553–556, Toulouse, 2006Google Scholar
  53. 53.
    L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  54. 54.
    D.H. Milone, L.E. Di Persia, M.E. Torres, Denoising and recognition using hidden Markov models with observation distributions modeled by hidden Markov trees. Pattern Recognit. 43, 1577–1589 (2010)MATHCrossRefGoogle Scholar
  55. 55.
    X. Ma, D. Schonfeld, A.A. Khokhar, Video event classification and image segmentation based on noncausal multidimensional hidden Markov Models. IEEE Trans. Image Process. 18(6), 1304–1313 (2009) Google Scholar
  56. 56.
    F. Matta, J.L. Dugelay, Person recognition using facial video information: a state of the art. J. Vis. Lang. Comput. 20, 180–187 (2009)CrossRefGoogle Scholar
  57. 57.
    D. Kulic, W. Takano, Y. Nakamura, Online segmentation and clustering from continuous observation of whole body motions. IEEE Trans. Robot. 25(5), 1158–1166 (2009)Google Scholar
  58. 58.
    Z. He, X. You, Y.Y. Tang, Writer identification of Chinese handwriting documents using hidden Markov tree model. Pattern Recognit. 41(4), 1295–1307 (2008)MATHCrossRefGoogle Scholar
  59. 59.
    C. Neuper, W. Klimesch, Event-Related Dynamics of Brain Oscillations: Progress in Brain Research Series, vol 159 (Elsevier, Amsterdam, 2006)Google Scholar
  60. 60.
    J. Kohlmorgen, K.R. Muëller, J. Rittweger, K. Pawelzik, Identification of nonstationary dynamics in physiological recordings. Biol. Cybern. 83(1), 73–84 (2000)MATHCrossRefGoogle Scholar
  61. 61.
    M. Sansalone, W.B. Streett, Impact-Echo: Non-Destructive Evaluation of Concrete and Masonry (Bullbrier Press, Ithaca, 1997)Google Scholar
  62. 62.
    R.E. Taylor, M.J. Aitken, Chronometric Dating in Archaeology: Advances in Archaeological and Museum Science Series, vol. 2 (Springer, New York, 1997)Google Scholar
  63. 63.
    A. Salazar, L. Vergara, A. Serrano, J. Igual, A general procedure for learning mixtures of independent component analyzers. Pattern Recognit. 43(1), 69–85 (2010)MATHCrossRefGoogle Scholar
  64. 64.
    J.F. Cardoso, High-order contrasts for independent component analysis. Neural Comput. 11(1), 157–192 (1999)MathSciNetCrossRefGoogle Scholar
  65. 65.
    A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)CrossRefGoogle Scholar
  66. 66.
    R. Boscolo, H. Pan, Independent component analysis based on nonparametric density estimation. IEEE Trans. Neural Netw. 15(1), 55–65 (2004)CrossRefGoogle Scholar
  67. 67.
    E.G. Learned-Miller, J.W. Fisher, ICA using spacings estimates of entropy. J. Machine Learn. Res. 4, 1271–1295 (2003)MathSciNetGoogle Scholar
  68. 68.
    A. Hyvärinen, P.O. Hoyer, M. Inki, Topographic independent component analysis. Neural Comput. 13(7), 1527–1558 (2001)MATHCrossRefGoogle Scholar
  69. 69.
    A. Hyvärinen, J. Hurri, Blind separation of sources that have spatiotemporal variance dependencies. Signal Process. Special Issue Indep. Compon. Anal. Beyond 84(2), 247–254 (2004)MATHGoogle Scholar
  70. 70.
    H.J. Park, T.W. Lee, Capturing nonlinear dependencies in natural images using ICA and mixture of Laplacian distribution. Neurocomputing 69, 1513–1528 (2006)CrossRefGoogle Scholar
  71. 71.
    F.R. Bach, M.I. Jordan, Beyond independent components: trees and clusters. J. Mach. Learn. Res. 3, 1205–1233 (2003)MathSciNetGoogle Scholar
  72. 72.
    O. Chapelle, B. Schölkopf, A. Zien, Semi-supervised Learning (MIT Press, Cambridge, 2006)CrossRefGoogle Scholar
  73. 73.
    K.H. Jeong, J.W. Xu, D. Erdogmus, J.C. Principe, A new classifier based on information theoretic learning with unlabelled data. Neural Netw. 18, 719–726 (2005)CrossRefGoogle Scholar
  74. 74.
    D. Erdogmus, J.C. Principe, From linear adaptive filtering to nonlinear information processing—the design and analysis of information processing systems. IEEE Signal Process. Mag. 23(6), 14–33 (2006)MathSciNetCrossRefGoogle Scholar
  75. 75.
    C.W. Hesse, C.J. James, On semi-blind source separation using spatial constraints with applications in EEG Analysis. IEEE Trans. Biomed. Eng. 53(12–1), 2525–2534 (2006)CrossRefGoogle Scholar
  76. 76.
    J. Even, K. Sugimoto, An ICA approach to semi-blind identification of strictly proper systems based on interactor polynomial matrix. Int. J. Robust Nonlinear Control 17, 752–768 (2007)MATHMathSciNetCrossRefGoogle Scholar
  77. 77.
    Z. Ding, T. Ratnarajah, C.F.N. Cowan, HOS-based semi-blind spatial equalization for MIMO rayleigh fading channels. IEEE Trans. Signal Process. 56(1), 248–255 (2008)MathSciNetCrossRefGoogle Scholar
  78. 78.
    L. Vergara, J. Gosálbez, J.V. Fuente, R. Miralles, I. Bosch, A. Salazar, A. Lopez, L. Domínguez, Ultrasonic nondestructive testing on marble block rocks. Mater. Evaluation 62(1), 73–78 (2004)Google Scholar
  79. 79.
    T.W. Lee, M. Girolami, T.J. Sejnowski, Independent component analysis using an extended InfoMax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Comput. 11(2), 417–441 (1999)CrossRefGoogle Scholar
  80. 80.
    A.J. Bell, T.J. Sejnowski, The “Independent Components” of natural scenes are edge filters. Vis. Res. 37(23), 3327–3338 (1997)CrossRefGoogle Scholar
  81. 81.
    A. Hyvärinen, E. Oja, A fast fixed-point algorithm for independent component analysis. Neural Comput. 9(7), 1483–1492 (1998)CrossRefGoogle Scholar
  82. 82.
    A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)CrossRefGoogle Scholar
  83. 83.
    J.H. Van Hateren, A. van der Shaaf, Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. B 265, 359–366 (1998)CrossRefGoogle Scholar
  84. 84.
    Y. Matsuda, K. Yamaguchi, Linear multilayer ICA generating hierarchical edge detectors. Neural Comput. 19(1), 218–230 (2007)MATHCrossRefGoogle Scholar
  85. 85.
    T.S. Lee, D. Mumford, Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A 20(7), 1434–1448 (2003)CrossRefGoogle Scholar
  86. 86.
    A. Salazar, L. Vergara, J. Igual, J. Gosalbez, Blind source separation for classification and detection of flaws in impact-echo testing. Mech. Syst. Signal Process. 19(6), 1312–1325 (2005)CrossRefGoogle Scholar
  87. 87.
    Y. Huang, J. Benesty, J. Chen, Acoustic MIMO Signal Processing (Springer, Berlin, 2006)MATHGoogle Scholar
  88. 88.
    A. Salazar, L. Vergara, R. Llinares, Learning material defect patterns by separating mixtures of independent component analyzers from NDT Sonic Signals. Mech. Syst. Signal Process. 24(6), 1870–1886 (2010)CrossRefGoogle Scholar
  89. 89.
    M. Jobert, H. Shulz, P. Jähnig, C. Tismer, F. Bes, H. Escola, A computerized method for detecting episodes of wakefulness during sleep based on the Alpha slow-wave index (ASI). Sleep 17(1), 37–46 (1994)Google Scholar
  90. 90.
    R. Felder, L. Silverman, Learning and teaching styles. J. Eng. Educ. 78(7), 674–681 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Communications, School of Telecommunication EngineeringPolytechnic University of ValenciaValenciaSpain

Personalised recommendations