Network Configuration in Presence of Synchronization Requirements

  • Jörn SchönbergerEmail author
  • Herbert Kopfer
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


This article investigates a multi-commodity network flow problem. The generated network flows represent processes running in this network. Redundant processes are installed in order to increase the robustness of the transportation system. A product can be served by two or even more of these processes so that ad-hoc re-assignments from one mode to another mode can be applied. Special attention is paid to the temporal and spatial synchronization of alternative processes. We propose a mathematical model for the investigated problem and evaluate this model within computational experiments.


Network configuration Mathematical programming Transport network Synchronization Multi-commodity network flow 


  1. 1.
    Bäck, T.: Binary strings. In: Bäck, T. et al. (Eds.) Evolutionary Computation 1—Basic Algorithms and Operators, pp. 132–135. IoP, Bristol (2000)Google Scholar
  2. 2.
    Cheng, R., Gen, M., Tsujimura, Y.: A tutorial survey of job-shop scheduling problems using genetic algorithms—representation. Comput. Ind. Eng. 30(4), 983–997 (1996)CrossRefGoogle Scholar
  3. 3.
    Drexl, M., Rieck, J., Sigl, T., Berning, B.: Simultaneous Vehicle and Crew Routing and Scheduling for Partial and Full Load Long-Distance Road Transport, Technical report LM-2011-05, University of Mainz, Lehrstuhl für Logistikmanagement (2011)Google Scholar
  4. 4.
    Drexl, M.: Synchronization in Vehicle Routing—A Survey of VRPs with Multiple Synchronization Constraints, Technical report LM-2011-02. University of Mainz, Lehrstuhl für Logistikmanagement (2011)Google Scholar
  5. 5.
    Dror, M., Laporte, G., Trudeau, P.: Vehicle routing with split deliveries. Discrete Appl. Math. 50(3), 239–254 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fiedler, C.: Integration by synchronization: logistics planning and control based on petri nets. In: Proceeding of 1st Annual IEEE Systems Conference (2007)Google Scholar
  7. 7.
    Fretter, C., Krumov, L., Weihe, K., Müller-Hannemann, M., Hütt, M.-T.: Phase synchronization in railway timetables. Eur. Phys. J. B. 77(2), 281–289 (2010)Google Scholar
  8. 8.
    Gallego, G., Phillips, R.: Revenue management of flexible products. M&SOM 6(4), 321–337 (2004)CrossRefGoogle Scholar
  9. 9.
    Golden, B.L., Raghavan, S., Wassil, E.A.: The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, New York (2008)zbMATHCrossRefGoogle Scholar
  10. 10.
    Irnich, S., Desaulniers, G.: Shortest path problems with resource constraints. In: Desaulniers, G., Desrosiers, J. (eds.) Column Generation, pp. 33–65. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Lämmer, S., Donner, R., Helbing, D.: Anticipative control of switched queueing systems. Eur. Phys. J. B. 63(3), 341–347 (2007)CrossRefGoogle Scholar
  12. 12.
    Laporte, G., Marin, A., Mesa, J.A., Perea, F.: Designing robust rapid transit networks with alternative routes. J. Adv. Transp. 45(1), 54–65 (2011)CrossRefGoogle Scholar
  13. 13.
    Savelsbergh, M.W.P., Sol, M.: The general pickup and delivery problem. Transp. Sci. 29(1), 17–29 (1995)zbMATHCrossRefGoogle Scholar
  14. 14.
    Schönberger, J.: Model-Based Control of Logistics Processes in Volatile Environments. Springer, New York (2011)zbMATHCrossRefGoogle Scholar
  15. 15.
    Schönberger, J., Kopfer, H.: A general approach to robustness in logistics—basic concepts, quantification approaches and experimental evaluations, In: Voss, S. et al. (Eds.) Logistik Management, pp. 299–323, Springer, Berlin (2009)Google Scholar
  16. 16.
    Tang, X., Xianpeng, W.: Iterated local search algorithm based on very large-scale neighborhood for prize-collecting vehicle routing problem. Int. J. Adv. Manufact. Technol. 29, 1246–1258 (2006)CrossRefGoogle Scholar
  17. 17.
    Tomlin, J.A.: Minimum-cost multicommodity network flows. Oper. Res. 14(1), 45–51 (1966)CrossRefGoogle Scholar
  18. 18.
    Ziha, K.: Redundancy and robustness of systems of events. Probab. Eng. Mech. 15, 347–357 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Chair of LogisticsUniversity of BremenBremenGermany

Personalised recommendations