Potentials of Nonlinear Dynamics Methods to Predict Customer Demands in Production Networks

Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


Nowadays, markets are characterized by increasing dynamics and complexity. In particular, customer demands are often highly volatile. These conditions complicate demand forecasting and reduce the average accuracy of forecasting data. Nevertheless, manufacturing companies have to predict customer demands precisely, in order to achieve a well-founded production planning and control. The paper at hand deals with methods to predict customer demands in application scenarios of production logistics. Firstly, forecasting methods for smooth customer demand are described with a particular emphasis on nonlinear dynamics methods. Subsequently, a new algorithm to predict intermittent demand is introduced. In both cases of demand evolution, different methods are applied to predict demand data generated by a discrete-event simulation of a production network. Forecasting results are interpreted and the different methods are rated regarding their applicability. The research displays that an application of nonlinear dynamics methods can lead to improved forecasting accuracy.


Demand forecasting Intermittent demand Nonlinear dynamics Time series analysis 



This research has been funded by German Research Foundation (DFG) under the reference number SCHO 540/21-1.


  1. 1.
    Wiendahl, H.P.: Betriebsorganisation für Ingenieure. Carl Hanser, München (2010)Google Scholar
  2. 2.
    Günther, H.O., Tempelmeier, H.: Produktion und Logistik. Springer, Berlin (2005)Google Scholar
  3. 3.
    Scholz-Reiter, B., Kück, M.: Auswahl von Prognoseverfahren für Kundenbedarfe - Erstellung einer Datenbank mit Handlungsempfehlungen zur Auswahl geeigneter Prognoseverfahren. In: Industrie Management, vol. 28, pp. 61–65. GITO, Berlin (2012)Google Scholar
  4. 4.
    Scholz-Reiter, B., Kück, M., Toonen, C.: Improved demand forecasting using local models based on delay time embedding. In: International Journal of Systems Applications Engineering& Development, vol. 6, pp. 17–27. University Press (2012)Google Scholar
  5. 5.
    Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1976)zbMATHGoogle Scholar
  6. 6.
    Wedekind, H.: Ein Vorhersagemodell für sporadische Nachfragemengen bei der Lagerhaltung. In: Ablauf- und Planungsforschung, vol. 9, pp. 1–11. Oldenbourg, München (1968)Google Scholar
  7. 7.
    Altay, N., Litteral, L.A.: Service Parts Management—Demand Forecasting and Inventory Control. Springer, London (2011)Google Scholar
  8. 8.
    Croston, J.D.: Forecasting and stock control for intermittent demands. Oper. Res. Q. 23, 289–303 (1972)zbMATHCrossRefGoogle Scholar
  9. 9.
    Mertens, P., Rässler, S.: Prognoserechnung. Physica, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Alicke, K.: Planung und Betrieb von Logistiknetzwerken: Unternehmensübergreifendes Supply Chain Management. Springer, Berlin (2005)Google Scholar
  11. 11.
    Schlittgen, R., Streitberg, B.H.J.: Zeitreihenanalyse. Oldenbourg, München (1995)Google Scholar
  12. 12.
    Scholz-Reiter, B., Freitag, M., Schmieder, A., Müller, S.: A dynamical concept for production planning & control. In: Proceedings of 16th International Conference Production Research, pp. 27–40. Prague (2001)Google Scholar
  13. 13.
    Papakostas, N., Efthymiou, K., Mourtzis, D., Chryssolouris, G.: Modeling the complexity of manufacturing systems using non-linear dynamics approaches. CIRP Ann. Manuf. Technol. 58, 437–440 (2009)CrossRefGoogle Scholar
  14. 14.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. University Press, Cambridge (2004)zbMATHGoogle Scholar
  15. 15.
    Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Lecture Notes in Mathematics. vol. 898, pp. 366–381. Springer, Warwick (1981)Google Scholar
  16. 16.
    Kennel, M., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)Google Scholar
  17. 17.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 (1986)Google Scholar
  18. 18.
    Buzug, T., Pfister, G.: Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors. Phys. Rev. Lett. A 45, 7073–7084 (1992)Google Scholar
  19. 19.
    Sauer, T.: Time series prediction by using delay coordinate embedding. In: Weigend, A.S., Gershenfeld, N.A. (eds) Time Series Prediction: Forecasting the Future and Understanding the Past. pp. 175–193. Addison-Wesley, Harlow (1994)Google Scholar
  20. 20.
    Wallström, P., Segerstedt, A.: Evaluation of forecasting error measurements and techniques for intermittent demand. Int. J. Prod. Econ. 128, 625–636 (2010)Google Scholar
  21. 21.
    Scholz-Reiter, B., Kück, M., Toonen, C.: Simulation-based generation of time series representing customer demands in networked manufacturing systems. In: Proceedings of 16th Annual International Conference Industrial Engineering Theory, Applications and Practice, pp. 488–493, Stuttgart (2011)Google Scholar
  22. 22.
    Sugihara, G., May, R.M.: Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344, 734–741 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.BIBA—Bremer Institut für Produktion und Logistik GmbHUniversity of BremenBremenGermany

Personalised recommendations