Evaluating Lead Time Standard Deviation with Regard to the Lead Time Syndrome

  • Mathias KnollmannEmail author
  • Katja Windt
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


Extending lead time standard deviation is a key figure that directly influences the due date reliability of a production process. Extending or reducing the planned lead time when trying to improve the due date reliability, does not only change the mean lead time, but also strongly affects the value of the lead time standard deviation. This connection is also associated with the Lead Time Syndrome of production control, which serves as a discussion framework. The aim of this paper is to investigate the lead time standard deviation influencing variables. As a result, various triggers of standard deviation will be discussed.


Lead time syndrome Lead time standard deviation Disturbances Due date reliability Production planning and control 



The research of Katja Windt is supported by the Alfried Krupp Prize for Young University Teachers of the Alfried Krupp von Bohlen und Halbach-Foundation.


  1. 1.
    Lindau, R.A., Lumsden, K.R.: Actions taken to prevent the propagation of disturbances in manufacturing systems. Int. J. Prod. Econ. 41, 241–248 (1995)CrossRefGoogle Scholar
  2. 2.
    Ould-Louly, M.-A., Dolgui, A.: The MPS parameterization under lead time uncertainty. Int. J. Prod. Econ. 90, 369–376 (2004)CrossRefGoogle Scholar
  3. 3.
    Nyhuis, P., Wiendahl, H.-P.: Fundamentals of Production Logistics: Theory Tools and Applications. Springer, Berlin (2009)CrossRefGoogle Scholar
  4. 4.
    Mather, H., Plossl, G.: Priority fixation versus throughput planning. Production and inventory management: J. Am. Prod. Inventory Control Soc., APICS. 3rd Q., pp. 27–51 (1977)Google Scholar
  5. 5.
    Wiendahl, H.-P.: Fertigungsregelung: Logistische Beherrschung von Fertigungsabläufen auf Basis des Trichtermodells. Hanser Verlag (1997)Google Scholar
  6. 6.
    Knollmann, M., Windt, K.: Exploitation of Due Date Reliability Potentials—Mathematical Investigation of the Lead Time Syndrome, 3rd International Conference on Dynamics in Logistics (LDIC). In print, p. 12 (2012)Google Scholar
  7. 7.
    Lödding, H.: Verfahren der Fertigungssteuerung. Springer, Berlin (2008)Google Scholar
  8. 8.
    Windt, K., Nyhuis, P., Kolev, I., Gebhardt, N., Eilmann, J., Fronia, P., Bertsch, S.: Improving Due Date Reliability of Steel Mills: Identification of Punctuality Potentials, Innovation in Product and Production, 21st International Conference on Production Research (2011)Google Scholar
  9. 9.
    Nyhuis, P., Wiendahl, H.-P.: Logistic Production operating curves—basic model of the theory of logistic operating curves. CIRP Ann., Manufact. Technol. 55, 441–444 (2006)Google Scholar
  10. 10.
    Wiendahl, H.P.: Betriebsorganisation für Ingenieure. Hanser Verlag (2008)Google Scholar
  11. 11.
    Schuh, G.: Produktionsplanung und -steuerung: Grundlagen, Gestaltung und Konzepte. Springer (2006)Google Scholar
  12. 12.
    Breithaupt, J.-W., Land, M., Nyhuis, P.: The workload control concept: theory and practical extensions of load oriented order release. Prod. Plann. Control 13, 625–638 (2002)CrossRefGoogle Scholar
  13. 13.
    Selçuk, B., Fransoo, J.C., De Kok, A.G., DeKok, A.: The effect of updating lead times on the performance of hierarchical planning systems. Int. J. Prod. Econ. 104, 427–440 (2006)CrossRefGoogle Scholar
  14. 14.
    Selçuk, B., Adan, I.J., de Kok, T.G., Fransoo, J.C.: An explicit analysis of the lead time syndrome: stability condition and performance evaluation. Int. J. Prod. Res. 47, 2507–2529 (2009)zbMATHCrossRefGoogle Scholar
  15. 15.
    Moscoso, P., Fransoo, J., Fischer, D., Wäfler, T.: The planning bullwhip: a complex dynamic phenomenon in hierarchical systems. In: Fransoo, J.C., Wäfler, T., Wilson, J. (eds.) Behavioral Operations in Planning and Scheduling, pp. 159–186. Springer, Berlin (2011)Google Scholar
  16. 16.
    Patig, S.: Ansatzpunkte und Rechnerunterstützung des produktionsorientierten Störungsmanagements. Fakultät für Informatik, Otto-von-Guericke-Universität Magdeburg (1999)Google Scholar
  17. 17.
    Schwarz, F.: Störungsmanagement in Produktionssystemen. Shaker (2004)Google Scholar
  18. 18.
    Kingsman, B.G.: Input/output backlog control and dynamic capacity planning in versatile manufacturing companies. In: Christer, A.H., Osaki, S., Thomas, L.C. (eds.) Stochastic Modelling in Innovative Manufacturing, pp. 97–122. Springer, Berlin (1997)Google Scholar
  19. 19.
    Breithaupt, J.-W.: Controlling production dynamics—managing uncertainties with automatic production control. Int. J. Prod. Res. 38, 4235–4246 (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Hoang Pham: Basic Statistical Concepts. In: Pham, H. (ed.) Springer Handbook Of Engineering Statistics, pp. 3–48. Springer, Berlin (2006)Google Scholar
  21. 21.
    Kozak, A., Staudhammer, C., Watts, S.: Introductory probability and statistics: applications for forestry and natural sciences. CABI Publishing (2008)Google Scholar
  22. 22.
    Ludwig, E.: Modellgestützte Diagnose logistischer Produktionsabläufe. VDI Fortschritt-Berichte (2) 362 (1994)Google Scholar
  23. 23.
    Yu, K.-W.: Terminkennlinie: Eine Beschreibungsmethodik für die Terminabweichung im Produktionsbereich. Fortschritt-Berichte VDI (2001)Google Scholar
  24. 24.
    Koh, S.C.L., Saad, S.M.: Managing uncertainty in ERP-controlled manufacturing environments in SMEs. Int. J. Prod. Econ. 101, 109–127 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Jacobs University BremenBremenGermany

Personalised recommendations