Advertisement

Self-Optimizing Decision-Making in Production Control

  • Günther Schuh
  • Till Potente
  • Sascha Fuchs
  • Christina Thomas
  • Stephan Schmitz
  • Carlo HausbergEmail author
  • Annika Hauptvogel
  • Felix Brambring
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

This paper deals with the concept for self-optimizing decision-making in production planning and control. The concept is based on a value stream that provides real-time production data. This data enables a qualified decision regarding production planning and control. Practice has shown that production systems with a high production process complexity—such as job shop production with low volume production—are difficult to control automatically. Therefore, employees have an important role to play but need to be supported regarding their decision-making. The goal is to highlight relevant decisions and put them into the correct context. An unconventional and interactive illustration that abandons classic numerical key performance indicators helps to derive the correct decisions. Varying levels of detail regarding the depicted data allow the user to “zoom” in or out of the state of his production system. By support of simulation and visualization tools, the aim of this paper is to present a concept for self-optimizing decision-making in production control in order to help user making the right decision.

Keywords

Self-optimizing Decision-making support Production planning and control Tool for visualization 

Notes

Acknowledgments

The new concept of self-optimizing in production control as well as the described implementation is being investigated by the Laboratory for Machine Tools and Production Engineering (WZL) within the publicly funded excellence initiative “Integrative production technology for high wage countries” at RWTH Aachen University in cooperation with the DFG (Deutsche Forschungsgemeinschaft, German Research Foundation).

References

  1. 1.
    Jones, D.: Creating Lean Solutions 2, pp. 17–28. Lean Management Summit, Aachen (2005)Google Scholar
  2. 2.
    Schuh, G., Lenders, M., Nussbaum, C., Kupke, D.: Design for changeability. In: ElMaraghy, H. (ed.) Changeable and Reconfigurable Manufacturing Systems. Springer, London (2008)Google Scholar
  3. 3.
    Milberg, J., Neise, P., Organizational Design of Supply Chains, WGP, Production Engineering XIII/2:181–186 (2006)Google Scholar
  4. 4.
    Valckenaers, P., Van Brussels, H.: Holonic manufacturing execution systems. Annals of the CIRP 54(1), 427–432 (2005)CrossRefGoogle Scholar
  5. 5.
    Zijm, W.H.M.: Towards intelligent manufacturing planning and control systems. J. Spectrum Springer 22(3), 313–345 (2000)zbMATHGoogle Scholar
  6. 6.
    Schwartz B., The paradox of choice: why more is less (2004)Google Scholar
  7. 7.
    Wiendahl, H.-P.; Load-oriented Manufacturing Control; Springer (1995)Google Scholar
  8. 8.
    Goldratt, E., Cox, J.: The Goal: Excellence in Manufacturing. North River Press, Croton-on-Hudson (1984)Google Scholar
  9. 9.
    Schuh, G., Potente T., Fuchs S.: Shifting Bottlenecks in Production Control., In: Hoda, A., ElMaraghy (Hrsg.): Enabling Manufacturing Competitiveness and Economic Sustainibility. Proceedings of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual Production, (CARV 2011), Montreal, pp. 505–511 (2012)Google Scholar
  10. 10.
    Dipl.-Wi.-Ing. Matthias Bornhäuser.: Reifegradbasierte Werkstattsteuerung Heimsheim: Jost-Jetter-Vlg; 1. Auflage. Zugl. Stuttgart, Univ., Diss. (2009)Google Scholar
  11. 11.
    Lücke, O.: Methodische Nutzung der betrieblichen Lernfähigkeit. Essen: Vulkan-Verlag (Schriftenreihe des IWF) Zugl. Braunschweig, Techn. Univ., Diss. (1999)Google Scholar
  12. 12.
    Hirschberg, A. G.: Verbindung der Produkt- und Funktionsorientierung in der Fertigung. München: iwb Forschungsberichte; 137. Zugl. München, Techn. Univ., Diss. (2000)Google Scholar
  13. 13.
    Brecher, C.: Integrative Production Technology for High-Wage Countries. Springer, Berlin (2011)Google Scholar
  14. 14.
    Adam, D.: Produktions-Management 9, überarb. Aufl., Nachdr., Wiesbaden, Gabler (2001)Google Scholar
  15. 15.
    Hahn, D., Laßmann, G.: Produktionswirtschaft: Controlling industrieller Produktion, 3. Aufl., Heidelberg, Physica-Verl. (1999)Google Scholar
  16. 16.
    Nakata, T., Matsui, K., Miyake, Y., Nishioka, K.: Dynamic bottleneck control in wide variety production factory. IEEE Trans. Semicond. Manuf. 12(3), 273–280 (1999)CrossRefGoogle Scholar
  17. 17.
    Roser, C., Nakano, M., Tanaka, M., Shifting Bottleneck Detection; Proceedings of the Winter Simulation Conference, p.1079–1086 (2002)Google Scholar
  18. 18.
    Goldratt, E.: The unbalanced plant. In: 24th APICS annual international conference, Boston, Mass., p. 195–199. Falls Church, USA (1981)Google Scholar
  19. 19.
    Lödding, H.: Dezentrale Bestandsorientierte Fertigungsregelung. Düsseldorf: VDI-Verlag, 2001. (Fortschritt-Berichte VDI: Reihe 2; 587) Zugl. Hannover, Univ., Diss. (2001)Google Scholar
  20. 20.
    Wiendahl, H.-P.: Betriebsorganisation für Ingenieure. 7., aktualisierte Aufl. München: Hanser (2010)Google Scholar
  21. 21.
    Chen, C.: Information visualization. Wiley Interdisciplinary Rev. Comput. Stat. 2(4), 387–403 (2010)CrossRefGoogle Scholar
  22. 22.
    Cleveland, W.S., McGill, R.: Graphical perception and graphical methods for analyzing scientific data. Science 229, 828–833 (1985)CrossRefGoogle Scholar
  23. 23.
    Wiendahl, H.-P.: Modelle und Systeme des Produktionscontrollings. In: Eversheim, W., Schuh, G. (eds.) Betriebshütte—Produktion und Management, Teil 2, 7, völlig neu bearb. Auflage. Springer, Berlin (1996)Google Scholar
  24. 24.
    Schumann, H., Müller, W.: Visualisierung—Grundlagen und allgemeine Methoden. Springer, Berlin Heidelberg (2000)zbMATHGoogle Scholar
  25. 25.
    Sackett, P.J., Al-Gaylani, M.F., Tiwari, A., Williams, D.: A review of data visualization: opportunities in manufacturing sequence management. Int. J. Comput. Integr. Manuf. 19(7), 689–704 (2006)CrossRefGoogle Scholar
  26. 26.
    Shneiderman, B.: The eyes have it—a task by data type taxonomy for information visualizations. Proceedings of the IEEE Symposium on Visual Languages, pp. 336–343 (1996)Google Scholar
  27. 27.
    Sackett, P.J., Williams, D.K.: Data visualization in manufacturing decision-making. J. Adv. Manufact. Syst. 2(2), 163–185 (2003)CrossRefGoogle Scholar
  28. 28.
    Zaeh, M., Reinhart, G., Ostgathe, M., Geiger, F., Lau, C.: A holistic approach for the cognitive control of production systems. Adv. Eng. Inform. 24(3), 300–307 (2010)CrossRefGoogle Scholar
  29. 29.
    Scholz-Reiter, B., Höhns, H.: Selbststeuerung logistischer Prozesse mit Agentensystemen. In: Schuh, G. (Hrsg.): Produktionsplanung und -steuerung. Grundlagen, Gestaltung und Konzepte. 3. Auflage, Springer, Berlin (2006)Google Scholar
  30. 30.
    Frank, U. et al.: Definition der Selbstoptimierung. Arbeitspapier des Sonderforschungsbereichs 614: Selbstoptimierende Systeme des Maschinenbaus. Revision 1.105. Paderborn (2004)Google Scholar
  31. 31.
    Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification technique for the description of self-optimizing mechatronic systems. Research in Engineering Design, vol. 20(4), pp. 201–223. Springer, London (2009)Google Scholar
  32. 32.
    Schmitt, R., Beaujean, P.: Selbstoptimierende Produktionssysteme. ZWF 102, 9, Carl Hanser, München, pp. 520–524 (2007)Google Scholar
  33. 33.
    Possel-Dölken, F., Herfs, W., Kempf, T., Brecher, C.: Kognitive Automatisierung—Szenarien und Ansätze für die selbstoptimierende Steuerung von Abläufen. atp—Automatisierungstechnische Praxis 49, 11, p. 50–60 (2007)Google Scholar
  34. 34.
    Niemann, H.: Methoden der Mustererkennung. Akad. Verl.-Ges, Frankfurt (1974)zbMATHGoogle Scholar
  35. 35.
    Ullmann, W.: Controlling logistischer Produktionsabläufe am Beispiel des Fertigungsbereichs. Düsseldorf: VDI-Verlag (Fortschritt-Berichte VDI, 2, 311). Zugl.: Hannover, Univ., Diss. (1994)Google Scholar
  36. 36.
    Reichmann, T.: Controlling mit Kennzahlen: Die systemgestützte Controlling-Konzeption mit Analyse- und Reportinginstrumenten. 8.,überarb. underw. Aufl. München: Vahlen (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Günther Schuh
    • 1
  • Till Potente
    • 1
  • Sascha Fuchs
    • 1
  • Christina Thomas
    • 1
  • Stephan Schmitz
    • 1
  • Carlo Hausberg
    • 1
    Email author
  • Annika Hauptvogel
    • 1
  • Felix Brambring
    • 1
  1. 1.Laboratory for Machine Tools and Production Engineering (WZL)RWTH Aachen UniversityAachenGermany

Personalised recommendations