Advertisement

Real-Time Logistics and Virtual Experiment Fields for Adaptive Supply Networks

  • Michael TothEmail author
  • Klaus M. Liebler
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Deciding quickly and reliably are key factors for the successful management of adaptive supply networks. This requires real-time information about the current situation and anticipated future behavior in the supply chain. Furthermore, the actors in distribution networks need fast and reliable decision support. This paper presents a process model and implementation guidelines for the concept of Virtual Experiment Fields. This approach combines the knowledge of experienced human planners with a powerful simulation tool and reasoning engines. Through synergetic interaction, verified decisions in complex supply network will be available near real-time.

Keywords

Supply Chain management Decision support Real world awareness Adaptive supply networks Virtual experiment fields Simulation Logistics assistance systems 

References

  1. 1.
    Deiseroth, J., Weibels, D., Toth, M., Wagenitz, A.: Simulationsbasiertes Assistenzsystem für die Disposition von globalen Lieferketten. In: Rabe, M (ed.) Advances in Simulation for Production and Logistics Applications. 13. ASIM Fachtagung Simulation in Produktion und Logistik Berlin, pp. 41–50. IRB Verlag, Stuttgart (2008)Google Scholar
  2. 2.
    van Wyk, J., Baerwaldt, W.: External risks and the global supply chain in the chemicals industry. Supply Chain Forum: Int. J. 6(1), 2–15 (2005)Google Scholar
  3. 3.
    McLaren, T., Head, M., Yuan, Y.: Supply chain collaboration alternatives: understanding the expected costs and benefits. Internet Res.: Electron. Networking Appl. Policy 12(4), 348–364 (2002)CrossRefGoogle Scholar
  4. 4.
    Dudek, G., Stadtler, H.: Negotiation-based collaborative planning between supply chains partners. Supply chain management and advanced planning. Eur. J. Oper. Res. 163(3), 668–687 (2005). doi: 10.1016/j.ejor.2004.01.014 zbMATHCrossRefGoogle Scholar
  5. 5.
    Mentzner, J., Foggin, J., Golicic, S.: Collaboration—the enablers impediments and benefits. Supply chain management review 16(September/October), 52–58 (2000)Google Scholar
  6. 6.
    Kuhn, A., Hellingrath, B., Hinrichs, J.: Logistische Assistenzsysteme—Entscheidungsunterstützung für eine robuste Logistik. In: ten Hompel, M (ed.) Software in der Logistik. Weltweit sichere Supply Chains—Anforferungen, Funktionalitäten und Anbieter in den Bereichen WMS, ERP, TMS und SCM. Huss, München (2008)Google Scholar
  7. 7.
    Lange, B.: Automobilindustrie wagt gemeinsame RFID-Wege. VDI-Nachrichten(13), http://www.autoran.de/fileadmin/autoran.de/data/Dokumente/Artikel_VDI_Nachricht_042011.pdf (2011)
  8. 8.
    Federal Ministry of Economics and Technology: RAN-based Automotive Network—Transparent and optimum management of processes in the motor-vehicle industry, http://www.autonomik.de/en/218.php
  9. 9.
    Hegmanns, T., Toth, M.: RFID-based Real Time Decision Support in Supply Chains. In: Massei, M., Frydman, C., McGinnis, M (eds.) The 10th international conference on modeling and applied simulation, Rom, 12–14 Sept (2011)Google Scholar
  10. 10.
    Eisenführ, F.: Rationales Entscheiden, 4th edn. Springer, Berlin (2003)Google Scholar
  11. 11.
    Kuhn, A., Klingebiel, K., Schmidt, A., Luft, N.: Modellgestütztes Planen und kollaboratives Experimentieren für robuste Distributionssysteme. In: Spath, D. (ed.) Wissensarbeit—zwischen strengen Prozessen und kreativem Spielraum, pp. 177–198. Gito, Berlin (2011)Google Scholar
  12. 12.
    Klingebiel, K., Winkler, M., Klaas, A., Laroque, C.: A Cross-Level Approach to Distribution Planning. In: Rykalova, Y. (ed.) Proceedings SpringSim. 2012 Spring Simulation Multiconference, 26–29 March (2012)Google Scholar
  13. 13.
    Wagenitz, A.: Modellierungsmethode zur Auftragsabwicklung in der Automobilindustrie. Dissertation, Technische Universität Dortmund. http://hdl.handle.net/2003/24408 (2007)
  14. 14.
    Westkämper, E.: Wandlungsfähige Produktionsunternehmen. Das Stuttgarter Unternehmensmodell. Springer, Berlin (2009)CrossRefGoogle Scholar
  15. 15.
    Stadtler, H., Kilger, C (eds.): Supply chain management and advanced planning. Concepts, models, software, and case studies, 4th edn. Springer, Berlin (2008)Google Scholar
  16. 16.
    Hegmanns, T.: Dezentrales Planungs- und Prozesskonzept für ein kollaboratives Bedarfs- und Kapazitätsmanagement in Produktionsnetzwerken. Praxiswissen, Dortmund (2009)Google Scholar
  17. 17.
    Meyr, H.: Supply chain planning in the German automotive industry. OR Spectrum 26(4), 447–470 (2004)zbMATHCrossRefGoogle Scholar
  18. 18.
    Westkämper, E.: Die Digital Fabrik. Kontinuierliche und partizipative Planung. In: Erfolg in Netzwerken, 1st edn., pp. 247–260. Springer, Berlin (2002)Google Scholar
  19. 19.
    Toth, M.: Real-Time Logistics for Adaptive Supply Networks. In: Katkalo, V.S., Ledyaev, A.P., Zierpka, D (eds.) Research and Education in Logistics and Supply Chain Management: the Current Situation and New Perspectives. Petersburger Dialogue, St. Petersburg, 14–16 Dec (2011)Google Scholar
  20. 20.
    Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, New York (2000)Google Scholar
  21. 21.
    Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization. Methods and Case Studies. Springer, Berlin (2006)zbMATHGoogle Scholar
  22. 22.
    Pearl, J.: Probablistic Reasoning in Intelligent Systems. Network of Plausible Inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  23. 23.
    Pfohl, H.-C.: Logistikmanagement. Konzeption und Funktionen, 2nd edn. Springer, Berlin (2004)Google Scholar
  24. 24.
    Keller, M.: Kennzahlenbasierte Wirtschaftlichkeitsbewertung der Integration von Unternehmen in Produktions- und Logistiknetzwerken. Praxiswissen, Dortmund (2010)Google Scholar
  25. 25.
    Gruden, D.: Umweltschutz in der Automobilindustrie. Motor, Kraftstoffe, Recycling. Vieweg + Teubner, Wiesbaden (2008)Google Scholar
  26. 26.
    Kuhn, A., Toth, M.: Assistenzsysteme für die effektive Planung logistischer Netzwerke. In: Scholz-Reiter, B. (ed.) Technologiegetriebene Veränderungen der Arbeitswelt, 1st edn, pp. 257–278. Gito, Berlin (2008)Google Scholar
  27. 27.
    Kuhn, A., Toth, M., Wagenitz, A.: Integrierte Versorgungsplanung im Rahmen der Digitalen Logistik. In: Schenk, M. (ed.) Digital Engineering—Herausforderung für die Arbeits- und Betriebsorganisation, pp. 175–194. Gito, Berlin (2009)Google Scholar
  28. 28.
    Turban, E., Aronson, J.E.: Decision support and expert systems. Management support systems, 5th edn., Upper Saddle River, Prentice-Hall International, NewJersy (1998)Google Scholar
  29. 29.
    Hollingsworth, D.: The Workflow Reference Model. Document Number TC00-1003. The Workflow Management Coalition, Winchester. http://www.wfmc.org/Download-document/TC00-1003-The-Workflow-Reference-Model.html (1995)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Supply Chain EngineeringFraunhofer-Institute for Material Flow and LogisticsDortmundGermany

Personalised recommendations