Order Related Acoustic Characterization of Production Data

  • Michael IberEmail author
  • Katja Windt
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


The conductor of an orchestra is able to distinguish not only between different instruments, but even among dozens of string players performing on instruments with similar sound qualities. Trained human ear not only is capable to highly differentiate between pitches and colors of sound, but also to localize the position, where the sound is coming from. This chapter presents a parameter mapping sonification approach on production data, which is based on these human perceptual skills. Representatively for other logistic parameters, throughput times of orders are sonified and allocated in a sonic space. Additionally to auditory representations of the established resource and order oriented views in logistics, a third perspective is introduced, which displays the complete workflow of an order simultaneously as a multi-pitched spatial sound. Thus, causes and impacts of high throughput times in the data set example could be identified.


Manufacturing Parameter mapping sonification Data mining Logistic analysis 



The research of Prof. Dr.-Ing. Katja Windt is supported by the Alfried Krupp Prize for Young University Teachers of the Krupp Foundation. This project was initiated and supported by the research group “Rhythm” of The Young Academy at the Berlin-Brandenburg Academy of Sciences and Humanities and the German Academy of Natural Scientists Leopoldina:


  1. 1.
    Windt, K., Philipp, T., Böse, F.: Complexity cube for the characterization of complex production systems. Int. J. Comput. Integr. Manuf. 21(2), 195–200 (2008)CrossRefGoogle Scholar
  2. 2.
    Nyhuis, P., Wiendahl, H.-P.: Fundamentals of Production Logistics. Springer, Berlin (2009)CrossRefGoogle Scholar
  3. 3.
    Choudhary, A.K., Harding, J.A., Tiwari, M.K.: Data mining in manufacturing: a review based on the kind of knowledge. J. Intell. Manuf. 20(5), 501–521 (2008)CrossRefGoogle Scholar
  4. 4.
    Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Boston (1977) Google Scholar
  5. 5.
    Wainer, H.: Graphic Discovery: A Trout in the Milk and Other Visual Adventures. Princeton University Press, Princeton (2005)zbMATHGoogle Scholar
  6. 6.
    Iber, M., Klein, J., Windt, K.: Die Grooving Factory, Logistische Datenanalyse im Klanglabor. In: Schoon, A., Volmar, A. (eds.) Das geschulte Ohr: Eine Kulturgeschichte der Sonifikation, 1st edn, pp. 147–163. Transcript, Bielefeld (2012)Google Scholar
  7. 7.
    Gutenberg, E.: Grundlagen der Betriebswirschaftslehre, Erster Band: Die Produktion, 24th edn. Springer, Berlin (1983)Google Scholar
  8. 8.
    Yu, K.-W.: Terminkennlinie, Eine Beschreibungsmethodik für die Terminabweichung im Produktionsbereich. VDI, Düsseldorf (2001)Google Scholar
  9. 9.
    Mizuyama, H.: “Artificial-Neural-Network-based MSQIM for Exploratory Analysis of Manufacturing Data”. In: Proceedings of the 7 th Asia Pacific Industrial Engineering and Management Systems Conference pp. 17–20 , Bangkok, Thailand, no. December, pp. 10–19 (2006)Google Scholar
  10. 10.
    Windt, K., Hütt, M.-T.: Exploring due date reliability in production systems using data mining methods adapted from gene expression analysis. CIRP Ann. Manuf. Technol. 60(1), 473–476 (2011)CrossRefGoogle Scholar
  11. 11.
    Liao, T.W., Ting, C.-F., Chang, P.-C.: An adaptive genetic clustering method for exploratory mining of feature vector and time series data. Int. J. Prod. Res. 44(14), 2731–2748 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    Kramer, G.: “Sonification Report: Status of the Field and Research Agenda,” (1997). [Online]. Available: [Accessed: 19-March-2012]
  13. 13.
    Pereverzev, S.V., Loshak, A., Backhaus, S., Davis, J.C.: “Quantum oscillations between two weakly coupled reservoirs of superfluid 3 He,” Nature, pp. 449-452 (1997)Google Scholar
  14. 14.
    Frysinger S. P.: “A Brief History of Auditory Data Representation to the 1980 s,” in First Symposium on Auditory Graphs (2005)Google Scholar
  15. 15.
    de Campo, A., Dayé, C., Frauenberger, C., Vogt, K., Wallscih, A., Eckel, G.: “Sonification as an Interdisciplinary Working Process,” in Proceedings of the 12 th International Conference on Auditory Display, pp. 28–35 (2006)Google Scholar
  16. 16.
    Hermann, T.: “Sonification for exploratory data analysis,” (2002) [Online]. Available: [Accessed: 24-Feb-2012]
  17. 17.
    Wiendahl, H.-P.: Betriebsorganisation für Ingenieure. Carl Hanser Verlag, München und Wien (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Jacobs University BremenBremenGermany

Personalised recommendations