Data Mining as Technique to Generate Planning Rules for Manufacturing Control in a Complex Production System

A Case Study from a Manufacturer of Aluminum Products
  • Christian RainerEmail author
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


This paper presents a case study from a manufacturer of aluminum products characterized by a complex and flexible production system with a broad product variety. We examine the application of the data mining process for generating planning rules. The resulting planning rules can be implemented in a manufacturing execution system to support the decision process in decentralized manufacturing control. The aim is to discover patterns and drivers for high manufacturing lead time from ERP data in order to define planning rules with the objective to reduce lead time.


Data mining Manufacturing control Planning rules 


  1. 1.
    Samarasekera, I.V.: Hot rolling. In: Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., and Buschow (eds.) Encyclopedia of Materials: Science and Technology, pp. 3836–3843. Elsevier, Oxford (2001)Google Scholar
  2. 2.
    Tang, L., Liu, J., Rong, A., Yang, Z.: A review of planning and scheduling systems and methods for integrated steel production. Eur. J. Oper. Res. 133, 1–20 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Association, A.: Rolling Aluminum: From the Mine Through the Mill. Aluminum Association, Arlington (2007)Google Scholar
  4. 4.
    Lopez, L., Carter, M.W., Gendreau, M.: The hot strip mill production scheduling problem: a tabu search approach. Eur. J. Oper. Res. 106, 317–335 (1998)zbMATHCrossRefGoogle Scholar
  5. 5.
    Stauffer, L., Liebling, T.M.: Rolling horizon scheduling in a rolling-mill. Ann. Oper. Res. 69, 323–349 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Nishi, T., Konishi, M., Ago, M.: A distributed decision making system for integrated optimization of production scheduling and distribution for aluminum production line. Comput. Chem. Eng. 31, 1205–1221 (2007)CrossRefGoogle Scholar
  7. 7.
    David, F., Pierreval, H., Caux, C.: Advanced planning and scheduling systems in aluminium conversion industry. Int. J. Comput. Integr. Manuf. 19, 705–715 (2006)CrossRefGoogle Scholar
  8. 8.
    Lödding, H.: Verfahren der Fertigungssteuerung Grundlagen, Beschreibung, Konfiguration. Springer, Berlin u.a (2008)Google Scholar
  9. 9.
    Wang, K.: Applying data mining to manufacturing: the nature and implications. J. Intell. Manuf. 18, 487–495 (2007)CrossRefGoogle Scholar
  10. 10.
    Chen, L.-D., Sakaguchi, T., Frolick, M.N.: Data mining methods, applications, and tools. Inf. Syst. Manage. 17, 1–6 (2000)Google Scholar
  11. 11.
    Choudhary, A.K., Harding, J.A., Tiwari, M.K.: Data mining in manufacturing: a review based on the kind of knowledge. J. Intell. Manuf. 20, 501–521 (2008)CrossRefGoogle Scholar
  12. 12.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Magazine 17, 37–54 (1996)Google Scholar
  13. 13.
    Harding, J.A., Shahbaz, M., Srinivas, S., Kusiak, A.: Data mining in manufacturing: a review. J. Manuf. Sci. Eng. 128, 969–976 (2006)Google Scholar
  14. 14.
    Liao, T.W.: Enterprise data mining: a review and research directions. In: Liao, T.W., Triantaphyllou, E. (eds.) Recent Advances in Data Mining of Enterprise Data: Algorithms and Applications. World Scientific, Singapore (2008)CrossRefGoogle Scholar
  15. 15.
    Windt, K., Hütt, M.-T.: Exploring due date reliability in production systems using data mining methods adapted from gene expression analysis. CIRP Ann. Manuf. Technol. 60, 473–476 (2011)CrossRefGoogle Scholar
  16. 16.
    Windt, K., Knollmann, M., Meyer, M.: Anwendung von Data Mining Methoden zur Wissensgenerierung in der Logistik - Kritische Reflexion der Analysefähigkeit zur Termintreueverbesserung. In: Spath, D. (ed.) Wissensarbeit - Zwischen strengen Prozessen und kreativem Spielraum, pp. 223–249. GITO, Berlin (2011)Google Scholar
  17. 17.
    Nonaka, I., Takeuchi, H.: The knowledge-creating company: how Japanese companies create the dynamics of innovation. Oxford University Press, New York (1995)Google Scholar
  18. 18.
    Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, Berlin (2008)zbMATHGoogle Scholar
  19. 19.
    Nyhuis, P., Wiendahl, H.-P.: Fundamentals of Production Logistics: Theory, Tools and Applications. Springer, Berlin (2009)CrossRefGoogle Scholar
  20. 20.
    Wiendahl, H.-P.: Load-Oriented Manufacturing Control. Springer, Berlin (1995) Google Scholar
  21. 21.
    Mitchell, T.M.: Machine Learning. McGraw Hill, New York (1997)Google Scholar
  22. 22.
    Everitt, B.S., Landau, S., Leese, M., Stahl, D.D.: Cluster Analysis. Wiley, Chichester (2011)Google Scholar
  23. 23.
    Bacher, J., Pöge, A., Wenzig, K.: Clusteranalyse: Anwendungsorientierte Einführung in Klassifikationsverfahren. Oldenbourg Wissenschaftsverlag, München (2010)CrossRefGoogle Scholar
  24. 24.
    Borgelt, C., Timm, H., Kruse, R.: Probalistic networks and fuzzy clustering as generalizations of Naive Bayes classifiers. Comput. Intell. Theory Pract. 8, 121–138 (2001)MathSciNetGoogle Scholar
  25. 25.
    MacLennan, J., Tang, Z., Crivat, B.: Data Mining with Microsoft SQL Server 2008. Wiley, Indianapolis (2009)Google Scholar
  26. 26.
    Boysen, N., Golle, U., Rothlauf, F.: The Car Resequencing Problem with Pull-Off Tables. BuR - Business Research. 4 (2011)Google Scholar
  27. 27.
    Lödding, H., Yu, K.-W., Wiendahl, H.-P.: Decentralized WIP-oriented manufacturing control (DEWIP). Prod. Planning Control 14, 42–54 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Economics and Business ManagementUniversity of LeobenLeobenAustria

Personalised recommendations