Advertisement

Using a Clustering Approach with Evolutionary Optimized Attribute Weights to Form Product Families for Production Leveling

  • Fabian BohnenEmail author
  • Marco Stolpe
  • Jochen Deuse
  • Katharina Morik
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)

Abstract

Production leveling aims at balancing production volume as well as production mix. Conventional leveling approaches require limited product diversity and stable, predictable customer demands. They are well-suited only for large scale production. This paper presents a methodology that enables the leveling of low volume and high mix production. It is based on two fundamental steps. In the first step, which is focused on in this paper, product types are grouped into families according to their manufacturing similarity. In the second step, a family-oriented leveling pattern is generated. This paper presents an innovative clustering approach for product family formation regarding leveling. It employs evolutionary strategies to optimize the weights of the attributes which are used for clustering according to their impact on the grouping result. The paper refers to an industrial application and also shows how product families can be utilized for leveling.

Keywords

Production leveling Clustering Evolutionary strategies 

Notes

Acknowledgments

Parts of the work on the proposed paper have been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Centre SFB 876 “Providing Information by Resource-Constrained Analysis”, project B3.

References

  1. 1.
    Liker, J.K.: The Toyota Way. McGraw-Hill, New York (2004)Google Scholar
  2. 2.
    Dennis, P.: Lean Production Simplified, 2nd edn. Productivity Press, New York (2007)Google Scholar
  3. 3.
    Rother, M., Harris, R.: Creating Continuous Flow. Lean Enterprise Institute, Brookline (2004)Google Scholar
  4. 4.
    Hüttmeir, A., de Treville, S., van Ackere, A., Monnier, L., Prenninger, J.: Trading off between heijunka and just-in-sequence. Int. J. Prod. Econ. 118, 501–507 (2009)CrossRefGoogle Scholar
  5. 5.
    de Smet, R., Gelders, L.: Using simulation to evaluate the introduction of a kanban subsystem within an MRP-controlled manufacturing environment. Int. J. Prod. Econ. 56–57, 111–122 (1998)CrossRefGoogle Scholar
  6. 6.
    Slomp, J., Bokhorst, J.A.C., Germs, R.A.: Lean production control system for high-variety/low-volume environments. Prod. Plann. Control 20, 586–595 (2009)CrossRefGoogle Scholar
  7. 7.
    Monden, Y.: Toyota Production System. Industrial Engineering and Management Press, Norcross (1983)Google Scholar
  8. 8.
    Shingo, S.: A Study of the Toyota Production System. Productivity Press, Cambridge (1989)Google Scholar
  9. 9.
    Takeda, H.: Das synchrone Produktionssystem, 4th edn. Redline Wirtschaft, Frankfurt/Main (2004)Google Scholar
  10. 10.
    Duggan, K.J.: Creating Mixed Model Value Streams. Productivity Press, New York (2002)Google Scholar
  11. 11.
    Erlach, K.: Wertstromdesign. Springer, Berlin (2007)Google Scholar
  12. 12.
    Rother, M., Shook, J.: Learning to See. Lean Enterprise Institute, Brookline (1999)Google Scholar
  13. 13.
    Smalley, A.: Creating level pull. Lean Enterprise Institute, Cambridge (2004)Google Scholar
  14. 14.
    Wuthnow, A.: Steuerung und Nivellierung von Wertströmen in der Automobilsteuergerätefertigung. Shaker, Aachen (2010)Google Scholar
  15. 15.
    Bohnen, F., Buhl, M., Deuse, J.: Systematic procedure for leveling of low volume and high mix production. In: 44th CIRP conference on manufacturing systems 2011Google Scholar
  16. 16.
    Boysen, N., Fliedner, M., Scholl, A.: Sequencing mixed-model assembly lines: Survey, classification and model critique. Eur. J. Oper. Res. 192, 349–373 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kubiak, W.: Minimizing variation of production rates in just-in-time systems. Eur. J. Oper. Res. 66, 259–271 (1993)zbMATHCrossRefGoogle Scholar
  18. 18.
    Yavuz, M., Akcali, E.: Production smoothing in just-in-time manufacturing systems. Int. J. Prod. Res. 45, 3579–3597 (2007)zbMATHCrossRefGoogle Scholar
  19. 19.
    Yavuz, M.: An iterated beam search algorithm for the multi-level production smoothing problem with workload smoothing goal. Int. J. Prod. Res. 48, 6189–6202 (2010)zbMATHCrossRefGoogle Scholar
  20. 20.
    Miltenburg, J.: Level schedules for mixed-model assembly lines in just-in-time production systems. Manag. Sci. 35, 192–207 (1989)zbMATHCrossRefGoogle Scholar
  21. 21.
    Merengo, C., Nava, F., Pozzetti, A.: Balancing and sequencing manual mixed-model assembly lines. Int. J. Prod. Res. 37, 2835–2860 (1999)zbMATHCrossRefGoogle Scholar
  22. 22.
    Korkmazel, T., Meral, S.: Bicriteria sequencing methods for the mixed-model assembly line in just-in-time production systems. Eur. J. Oper. Res. 131, 188–207 (2001)zbMATHCrossRefGoogle Scholar
  23. 23.
    Kubiak, W., Steiner, G., Yeomans, S.J.: Optimal level schedules for mixed-model, multi-level just-in-time assembly systems. Ann. Oper. Res. 69, 241–259 (1997)zbMATHCrossRefGoogle Scholar
  24. 24.
    McMullen, P.R.: The permutation flow shop problem with just in time production considerations. Prod. Plann. Control 13, 307–316 (2002)CrossRefGoogle Scholar
  25. 25.
    Yavuz, M., Akcali, E., Tufekci, S.: A hybrid meta-heuristic for the batching problem in just-in-time flow shops. J. Math. Model. Algorithm 5, 371–393 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Yavuz, M., Tüfekci, S.: Dynamic programming solution to the batching problem in just-in-time flow-shops. Comput. Ind. Eng. 51, 416–432 (2006)CrossRefGoogle Scholar
  27. 27.
    Kubiak, W., Yavuz, M.: Just-in-time smoothing through batching. Manuf. Serv. Oper. Manag. 10, 506–518 (2008)CrossRefGoogle Scholar
  28. 28.
    McMullen, P.R.: JIT mixed-model sequencing with batching and setup considerations via search heuristics. Int. J. Prod. Res. 48, 6559–6582 (2010)zbMATHCrossRefGoogle Scholar
  29. 29.
    Yavuz, M., Tufekci, S.: Analysis and solution to the single-level batch production smoothing problem. Int. J. Prod. Res. 45, 3893–3916 (2007)zbMATHCrossRefGoogle Scholar
  30. 30.
    Bohnen, F., Deuse, J.: Leveling of low volume and high mix production based on a group technology approach. In: Sihn, W., Kuhlang, P. (eds.) Proceedings of the 43rd CIRP International Conference on Manufacturing Systems, pp. 949–956 (2010)Google Scholar
  31. 31.
    Bohnen, F., Maschek, T., Deuse, J.: Leveling of low volume and high mix production based on a Group Technology approach. CIRP-JMST 4, 247–251 (2011)Google Scholar
  32. 32.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009)zbMATHCrossRefGoogle Scholar
  33. 33.
    Han, J., Kamber, M.: Data Mining—Concepts and Techniques. 2nd edn., Morgan Kaufmann, Los Altos (2006)Google Scholar
  34. 34.
    Weihs, C., Szepannek, G.: Distances in classification. In: Goebel, R., Siekmann, J., Wahlster, W. (eds.) ICDM 2009. LNCS, vol. 5633, pp. 1–12. Springer, Heidelberg (2009)Google Scholar
  35. 35.
    Harrington, E.C.: The desirability function. Ind. Qual. Control 21, 494–498 (1965)Google Scholar
  36. 36.
    Morik, K., Kaspari, A., Wurst, M., Skirzynski, M.: Multi-objective frequent termset clustering. Knowl. Inf. Syst. 30, 715–738 (2012)CrossRefGoogle Scholar
  37. 37.
    Mierswa, I., Wurst, M.: Information preserving multi-objective feature selection for unsupervised learning. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 1545–1552 (2006)Google Scholar
  38. 38.
    Deuse, J.: Fertigungsfamilienbildung mit feature-basierten Produktmodelldaten. Shaker, Aachen (1998)Google Scholar
  39. 39.
    Yin, Y., Kaku, I., Tang, J., Zhu, J.: Data Mining. Springer, London (2011)CrossRefGoogle Scholar
  40. 40.
    Halkidi, M., Gunopulos, D., Vazirgiannis, M., Kumar, N., Domeniconi, C.: A Clustering Framework Based on Subjective and Objective Validity Criteria. ACM Trans Knowl Discov Data 1, pp. 18:1–18:25 (2008)Google Scholar
  41. 41.
    Stolpe, M., Morik, K.: Learning from label proportions by optimizing cluster model selection. In: Gunopulos, D., Hofmann, T., Malerba, D. et al. (eds.) ECML PKDD 2011, LNAI, vol. 6913, pp. 349–364. Springer, Berlin (2011)Google Scholar
  42. 42.
    Davies, D.D., Bouldin, D.W.: A Cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)CrossRefGoogle Scholar
  43. 43.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar
  44. 44.
    Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: Rapid prototyping for complex data mining tasks. In: Proceedings of the 12th ACM SIGKDD 2006Google Scholar
  45. 45.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. Symp. Math. stat. prob., 281–297 (1967)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fabian Bohnen
    • 1
    Email author
  • Marco Stolpe
    • 2
  • Jochen Deuse
    • 1
  • Katharina Morik
    • 2
  1. 1.TU Dortmund University, Chair of Industrial EngineeringDortmundGermany
  2. 2.TU Dortmund University, Chair of Artificial IntelligenceDortmundGermany

Personalised recommendations