How Do Production Systems in Biological Cells Maintain Their Function in Changing Environments?

  • Moritz Emanuel BeberEmail author
  • Marc-Thorsten Hütt
Conference paper
Part of the Lecture Notes in Production Engineering book series (LNPE)


Metabolism is a fascinating natural production and distribution process. Metabolic systems can be represented as a layered network, where the input layer consists of all the nutrients in the environment (raw materials entering the production process in the cell), subsequently to be processed by a complex network of biochemical reactions (middle layer) and leading to a well-defined output pattern, optimizing, e.g., cell growth. Mathematical frameworks exploiting this layered-network representation of metabolism allow the prediction of metabolic fluxes (the cell’s ’material flow’) under diverse conditions. In combination with suitable minimal models it is possible to identify fundamental design principles and understand the efficiency and robustness of metabolic systems. Here, we summarize some design principles of metabolic systems from the perspective of production logistics and explore, how these principles can serve as templates for the design of robust manufacturing systems.


Systems biology Metabolic networks Enzymes Design principles Simulated evolution 



MEB is supported by a Deutsche Forschungsgemeinschaft grant to MTH (grant HU-937/6). We are indebted to Nikolaus Sonnenschein (San Diego, USA) for providing his expertise on flux-balance analysis. We gratefully acknowledge discussions and close collaboration with Katja Windt (Bremen, Germany) on the parallels of metabolism and manufacturing.


  1. 1.
    Becker, T., Beber, M., Windt, K., Hütt, M., Helbing, D.: Flow control by periodic devices: a unifying language for the description of traffic, production, and metabolic systems. J. Stat. Mech. Theory Exp. 2011, P05004 (2011)CrossRefGoogle Scholar
  2. 2.
    Kitano, H.: Computational systems biology. Nature 420, 206–210 (2002)CrossRefGoogle Scholar
  3. 3.
    Palsson, B.: Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  4. 4.
    Kholodenko, B.: Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006)CrossRefGoogle Scholar
  5. 5.
    Demeester, L., Eichler, K., Loch, C.H.: Organic production systems: what the biological cell can teach us about manufacturing. Manuf. Serv. Oper. Manage. 6, 115–132 (2004)CrossRefGoogle Scholar
  6. 6.
    Armbruster, D., Mikhailov, A.S., Kaneko, K.: Networks of Interacting Machines. World Scientific, Singapore (2005)Google Scholar
  7. 7.
    Helbing, D., Deutsch, A., Diez, S., Peters, K., Kalaidzidis, Y., Padberg-Gehle, K., Lämmer, S., Johansson, A., Breier, G., Schulze, F., et al.: Biologistics and the struggle for efficiency: concepts and perspectives. Adv. Complex Syst. 12, 533–548 (2009)CrossRefGoogle Scholar
  8. 8.
    Beber, M., Windt, K., Hütt, M.T.: Production research on metabolic systems. In: Spath, D., Ilg, R., Krause, T. (eds.) International Conference on Production Research (ICPR 21): Innovation in Product and Production 31 July–4 August 2011 in Stuttgart. Stuttgart, Germany, Fraunhofer-Verlag, Germany (2011)Google Scholar
  9. 9.
    Beber, M.E., Armbruster, D., Hütt, M.T.: Pattern complexity regulates modularity of flow networks. Phys. Rev. E (2012) (submitted)Google Scholar
  10. 10.
    Ueda, K., Vaario, J., Ohkura, K.: Modelling of biological manufacturing systems for dynamic reconfiguration. CIRP Ann. Manuf. Technol. 46, 343–346 (1997)CrossRefGoogle Scholar
  11. 11.
    Ueda, K., Kito, T., Fujii, N.: Modeling biological manufacturing systems with bounded-rational agents. CIRP Ann. Manuf. Technol. 55, 469–472 (2006)CrossRefGoogle Scholar
  12. 12.
    Ueda, K., Markus, A., Monostori, L., Kals, H.J.J., Arai, T.: Emergent synthesis methodologies for manufacturing. CIRP Ann. Manuf. Technol. 50, 535–551 (2001)CrossRefGoogle Scholar
  13. 13.
    Smith, J., Hütt, M.: Network dynamics as an interface between modeling and experiment in systems biology. In: Tretter, F., Gebicke-Haerter, P.J., Mendoza, E.R., Winterer, G. (eds.) Systems Biology in Psychiatric Research: From High-Throughput Data to Mathematical Modeling, pp. 234–276. Wiley-VCH(2010)Google Scholar
  14. 14.
    Varma, A., Palsson, B.O.: Metabolic flux balancing: basic concepts, scientific and practical use. Nat. Biotech. 12, 994–998 (1994)CrossRefGoogle Scholar
  15. 15.
    Price, N.D., Reed, J.L., Palsson, B.Ø.: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 (2004)CrossRefGoogle Scholar
  16. 16.
    Sonnenschein, N., Geertz, M., Muskhelishvili, G., Hütt, M.T.: Analog regulation of metabolic demand. BMC Syst. Biol. 5, 40 (2011)CrossRefGoogle Scholar
  17. 17.
    Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004)CrossRefGoogle Scholar
  18. 18.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407, 651–654 (2000)CrossRefGoogle Scholar
  20. 20.
    Ma, H., Zeng, A.: The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19, 1423–1430 (2003)CrossRefGoogle Scholar
  21. 21.
    Arita, M.: The metabolic world of Escherichia coli is not small. Proc. Natl. Acad. Sci. USA 101, 1543–1547 (2004)CrossRefGoogle Scholar
  22. 22.
    Erdős, P., Rényi, A.: On random graphs i. Publ. Math. Debrecen 6, 290 (1959)Google Scholar
  23. 23.
    Becker, T., Beber, M.E., Meyer, M., Windt, K., Hütt, M.T.: A comparison of network characteristics in metabolic and manufacturing systems. In: 3rd International Conference on Dynamics in Logistics—LDIC 2012, Springer (2012)Google Scholar
  24. 24.
    Ravasz, E., Somera, A.L., Monaru, D.A., Oltvai, Z.N., Barabási, A.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)CrossRefGoogle Scholar
  25. 25.
    Beber, M., Fretter, C., Jain, S., Müller-Hannemann, M., Hütt, M.T.: Artefacts in statistical analyses of network motifs. Proc. Roy. Soc. Interface (2012) (submitted)Google Scholar
  26. 26.
    Papp, B., Teusink, B., Notebaart, R.A.: A critical view of metabolic network adaptations. HFSP J. 3, 24–35 (2009)CrossRefGoogle Scholar
  27. 27.
    Basler, G., Grimbs, S., Ebenhöh, O., Selbig, J., Nikoloski, Z.: Evolutionary significance of metabolic network properties. J. The Roy. Soc. Interface (2011)Google Scholar
  28. 28.
    Handorf, T., Ebenhoh, O., Heinrich, R.: Expanding metabolic networks: scopes of compounds, robustness, and evolution. J. Mol. Evol. 61, 498–512 (2005)CrossRefGoogle Scholar
  29. 29.
    Riehl, W.J., Krapivsky, P.L., Redner, S., Segrè, D.: Signatures of arithmetic simplicity in metabolic network architecture. PLoS Comput. Biol. 6, e1000725 (2010)CrossRefGoogle Scholar
  30. 30.
    Noor, E., Eden, E., Milo, R., Alon, U.: Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Mol. Cell 39, 809–820 (2010)CrossRefGoogle Scholar
  31. 31.
    Maslov, S., Krishna, S., Pang, T., Sneppen, K.: Toolbox model of evolution of prokaryotic metabolic networks and their regulation. Proc. Natl. Acad. Sci. 106, 9743 (2009)CrossRefGoogle Scholar
  32. 32.
    Zhu, Q., Qin, T., Jiang, Y.Y., Ji, C., Kong, D.X., Ma, B.G., Zhang, H.Y.: Chemical basis of metabolic network organization. PLoS Comput. Biol. 7, e1002214 (2011)CrossRefGoogle Scholar
  33. 33.
    Suthers, P.F., Zomorrodi, A., Maranas, C.D.: Genome-scale gene/reaction essentiality and synthetic lethality, analysis. 5 (Dec 2164) 1–17Google Scholar
  34. 34.
    Behre, J., Wilhelm, T., von Kamp, A., Ruppin, E., Schuster, S.: Structural robustness of metabolic networks with respect to multiple knockouts. J. Theoret. Biol. 252, 433–441 (2008)CrossRefGoogle Scholar
  35. 35.
    Marr, C., Müller-Linow, M., Hütt, M.T.: Regularizing capacity of metabolic networks. Phys. Rev. E. Stat. Nonlinear Soft Matter Phys. 75, 041917 (2007)CrossRefGoogle Scholar
  36. 36.
    Borenstein, E., Kupiec, M., Feldman, M.W., Ruppin, E.: Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl. Acad. Sci. 105, 14482–14487 (2008)CrossRefGoogle Scholar
  37. 37.
    Takemoto, K., Nacher, J.C., Akutsu, T.: Correlation between structure and temperature in prokaryotic metabolic networks. BMC Bioinf. 8, 303 (2007)CrossRefGoogle Scholar
  38. 38.
    Takemoto, K., Akutsu, T.: Origin of structural difference in metabolic networks with respect to temperature. BMC Syst. Biol. 2, 82 (2008)CrossRefGoogle Scholar
  39. 39.
    Basler, G., Ebenhöh, O., Selbig, J., Nikoloski, Z.: Mass-balanced randomization of metabolic networks. Bioinformatics 27, 1397–1403 (2011)CrossRefGoogle Scholar
  40. 40.
    Fong, S.S., Palsson, B.Ø.: Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat. Genet. 36, 1056–1058 (2004)CrossRefGoogle Scholar
  41. 41.
    Segrè, D., Vitkup, D., Church, G.: Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA 99, 15112–15117 (2002)CrossRefGoogle Scholar
  42. 42.
    Motter, A.E., Gulbahce, N., Almaas, E., Barabási, A.L.: Predicting synthetic rescues in metabolic networks. Mol. Syst. Biol. 4, 1–10 (2008)CrossRefGoogle Scholar
  43. 43.
    Kim, D.H., Motter, A.E.: Slave nodes and the controllability of metabolic networks. New J. Phys. 11, 113047 (2009)CrossRefGoogle Scholar
  44. 44.
    Windt, K., Hütt, M., Meyer, M.: A modeling approach to analyze redundancy in manufacturing systems. In: ElMaraghy, H.A., (ed.) Enabling Manufacturing Competitiveness and Economic Sustainability: Proceedings of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual production (CARV2011), pp. 493–498. Springer (2011)Google Scholar
  45. 45.
    Kaluza, P., Mikhailov, A.S.: Evolutionary design of functional networks robust against noise. Europhys. Lett. 79, 48001 (2007)CrossRefGoogle Scholar
  46. 46.
    Kaluza, P., Ipsen, M., Vingron, M., Mikhailov, A.: Design and statistical properties of robust functional networks: a model study of biological signal transduction. Phys. Rev. E 75, 15101 (2007)CrossRefGoogle Scholar
  47. 47.
    Kaluza, P., Vingron, M., Mikhailov, A.: Self-correcting networks: function, robustness, and motif distributions in biological signal processing. Chaos 18, 026113 (2008)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Famili, I., Forster, J., Nielsen, J., Palsson, B.Ø.: Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. USA 100, 13134–13139 (2003)CrossRefGoogle Scholar
  49. 49.
    Nam, H., Conrad, T.M., Lewis, N.E.: The role of cellular objectives and selective pressures in metabolic pathway evolution. Curr. Opin. Biotechnol. 22, 1–6 (2011)Google Scholar
  50. 50.
    Eom, Y.H., Lee, S., Jeong, H.: Exploring local structural organization of metabolic networks using subgraph patterns. J. Theoret. Biol. 241, 823–829 (2006)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Nyhuis, P., Wiendahl, H.: Fundamentals of Production Logistics: Theory. Springer Verlag, Tools and Applications (2008)Google Scholar
  52. 52.
    Stange, P., Mikhailov, A.S., Hess, B.: Mutual synchronization of molecular turnover cycles in allosteric enzymes. The J. Physi. Chem. B 102, 6273–6289 (1998)CrossRefGoogle Scholar
  53. 53.
    Casagrande, V., Togashi, Y., Mikhailov, A.: Molecular synchronization waves in arrays of allosterically regulated enzymes. Phys. Rev. Lett. 99, 48301 (2007)CrossRefGoogle Scholar
  54. 54.
    Lämmer, S., Kori, H., Peters, K., Helbing, D.: Decentralised control of material or traffic flows in networks using phase-synchronisation. Physica A 363, 39–47 (2006)CrossRefGoogle Scholar
  55. 55.
    Lämmer, S., Helbing, D.: Self-control of traffic lights and vehicle flows in urban road networks. J. Stat. Mech. Theory Exp. (JSTAT) 2008, P04019 (2008)CrossRefGoogle Scholar
  56. 56.
    Fretter, C., Krumov, L., Weihe, K., Müller-Hannemann, M., Hütt, M.: Phase synchronization in railway timetables. Eur. Phys. J. B 77, 281–289 (2010)CrossRefGoogle Scholar
  57. 57.
    Sonnenschein, N., Marr, C., Hütt, M.T.: A topological characterization of medium-dependent essential metabolic reactions. Metabolites (2012) (submitted)Google Scholar
  58. 58.
    Marr, C., Theis, F., Liebovitch, L., Hütt, M.: Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of Escherichia coli. PLoS Comput. Biol. 6, e1000836 (2010)CrossRefGoogle Scholar
  59. 59.
    Lorenz, J., Battiston, S., Schweitzer, F.: Systemic risk in a unifying framework for cascading processes on networks. Eur. Phys. J. B 71, 441–460 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007)CrossRefGoogle Scholar
  61. 61.
    Brandman, O., Meyer, T.: Feedback loops shape cellular signals in space and time. Science 322, 390–395 (2008)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Engineering and ScienceJacobs UniversityBremenGermany

Personalised recommendations