Here and There among Logics for Logic Programming

  • Alexander Bochman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7265)

Abstract

We explore the range of propositional logics suitable for logic programs under the stable semantics, starting with the logic of here-and-there as a primary representative. It will be shown, however, that there are other potential logics in the range. Still, all such logics are based on essentially the same semantics, so their differences are largely due to choice of the underlying language. Our representation suggests a more tolerant answer to the question ‘What is the Logic of Logic Programming?’, as well as some further expressive opportunities in using logic programs as a general knowledge representation formalism.

Keywords

Logic Program Logic Programming Classical Logic Intuitionistic Logic Logical Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, A.R., Belnap Jr., N.D.: Entailment: The Logic of Relevance and Necessity. Princeton University Press, Princeton (1975)MATHGoogle Scholar
  2. 2.
    Arieli, O., Avron, A.: Reasoning with logical bilattices. Journal of Logic, Language, and Information 5, 25–63 (1996)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Belnap Jr., N.D.: A useful four-valued logic. In: Dunn, M., Epstein, G. (eds.) Modern Uses of Multiple-Valued Logic, pp. 8–41. D. Reidel (1977)Google Scholar
  4. 4.
    Bochman, A.: Biconsequence relations: A four-valued formalism of reasoning with inconsistency and incompleteness. Notre Dame Journal of Formal Logic 39(1), 47–73 (1998)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bochman, A.: A logical foundation for logic programming I: Biconsequence relations and nonmonotonic completion. Journal of Logic Programming 35, 151–170 (1998)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bochman, A.: A logical foundation for logic programming II: Semantics of general logic programs. Journal of Logic Programming 35, 171–194 (1998)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bochman, A.: A causal logic of logic programming. In: Dubois, D., Welty, C., Williams, M.-A. (eds.) Proc. Ninth Conference on Principles of Knowledge Representation and Reasoning, KR 2004, pp. 427–437. Whistler (2004)Google Scholar
  8. 8.
    Bochman, A.: Explanatory Nonmonotonic Reasoning. World Scientific (2005)Google Scholar
  9. 9.
    Bochman, A.: Logic in nonmonotonic reasoning. In: Brewka, G., Marek, V.W., Truszczynski, M. (eds.) Nonmonotonic Reasoning. Essays Celebrating its 30th Anniversary, pp. 25–61. College Publ. (2011)Google Scholar
  10. 10.
    Bochman, A., Lifschitz, V.: Yet another characterization of strong equivalence. In: Hermenegildo, M., Schaub, T. (eds.) Technical Communications of the 26th Int’l. Conference on Logic Programming (ICLP 2010). Leibniz International Proceedings in Informatics (LIPIcs), vol. 7, pp. 281–290. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2011)Google Scholar
  11. 11.
    Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs. TPLP 7(6), 745–759 (2007)MathSciNetMATHGoogle Scholar
  12. 12.
    Cabalar, P., Pearce, D., Valverde, A.: Reducing Propositional Theories in Equilibrium Logic to Logic Programs. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 4–17. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    de Jongh, D.H.J., Hendriks, L.: Characterization of strongly equivalent logic programs in intermediate logics. Theory Pract. Log. Program. 3, 259–270 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Transactions on Computational Logic 2, 526–541 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25, 369–389 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lloyd, J., Topor, R.: Making Prolog more expressive. Journal of Logic Programming 3, 225–240 (1984)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Pearce, D.: A new logical characterization of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS (LNAI), vol. 1216, pp. 57–70. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2), 3–41 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexander Bochman
    • 1
  1. 1.Computer Science DepartmentHolon Institute of TechnologyIsrael

Personalised recommendations