Gearing Up for Effective ASP Planning

  • Martin Gebser
  • Roland Kaufmann
  • Torsten Schaub
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7265)


We elaborate upon incremental modeling techniques for ASP Planning, a term coined by Vladimir Lifschitz at the end of the nineties. Taking up this line of research, we argue that ASP needs both a dedicated modeling methodology and sophisticated solving technology in view of the high practical relevance of dynamic systems in real-world applications.


Logic Program Logic Programming Integrity Constraint Initial Situation Ground Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of the Fifth International Conference and Symposium of Logic Programming (ICLP 1988), pp. 1070–1080. MIT Press (1988)Google Scholar
  2. 2.
    Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2), 39–54 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)Google Scholar
  4. 4.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5, 394–397 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence 138(1-2), 181–234 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In: Veloso, M. (ed.) Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 386–392. AAAI Press/The MIT Press (2007)Google Scholar
  8. 8.
    Kautz, H., Selman, B.: Planning as satisfiability. In: Neumann, B. (ed.) Proceedings of the Tenth European Conference on Artificial Intelligence (ECAI 1992), pp. 359–363. John Wiley & Sons (1992)Google Scholar
  9. 9.
    Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)CrossRefzbMATHGoogle Scholar
  10. 10.
    Whittemore, J., Kim, J., Sakallah, K.: SATIRE: a new incremental satisfiability engine. In: Proceedings of the Thirty-eighth Conference on Design Automation (DAC 2001), pp. 542–545. ACM Press (2001)Google Scholar
  11. 11.
    Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes in Theoretical Computer Science 89(4) (2003)Google Scholar
  12. 12.
    Subrahmanian, V., Zaniolo, C.: Relating stable models and AI planning domains. In: Proceedings of the Twelfth International Conference on Logic Programming, pp. 233–247. MIT Press (1995)Google Scholar
  13. 13.
    Dimopoulos, Y., Nebel, B., Köhler, J.: Encoding Planning Problems in Nonmonotonic Logic Programs. In: Steel, S., Alami, R. (eds.) ECP 1997. LNCS (LNAI), vol. 1348, pp. 169–181. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Lifschitz, V.: Answer set planning. In: de Schreye, D. (ed.) Proceedings of the International Conference on Logic Programming (ICLP 1999), pp. 23–37. MIT Press (1999)Google Scholar
  15. 15.
    Rintanen, J.: Planning and SAT. In: [3], ch.15, pp. 483–504Google Scholar
  16. 16.
    Gebser, M., Kaminski, R., Knecht, M., Schaub, T.: plasp: A prototype for PDDL-based planning in ASP. In: [31], pp. 358–363Google Scholar
  17. 17.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an Incremental ASP Solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003)Google Scholar
  19. 19.
    Kautz, H., Selman, B.: Pushing the envelope: Planning, propositional logic, and stochastic search. In: Shrobe, H., Senator, T. (eds.) Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 1194–1201. AAAI Press (1996)Google Scholar
  20. 20.
    McDermott, D.: PDDL — the planning domain definition language. Technical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control (1998)Google Scholar
  21. 21.
    Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann Publishers (2004)Google Scholar
  22. 22.
    Rintanen, J., Heljanko, K., Niemelä, I.: Parallel Encodings of Classical Planning as Satisfiability. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 307–319. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Kautz, H., McAllester, D., Selman, B.: Encoding plans in propositional logic. In: Aiello, L., Doyle, J., Shapiro, S. (eds.) Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR 1996), pp. 374–384. Morgan Kaufmann Publishers (1996)Google Scholar
  24. 24.
    Blum, A., Furst, M.: Fast planning through planning graph analysis. Artificial Intelligence 90(1-2), 279–298 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Knecht, M.: Efficient domain-independent planning using declarative programming. M.Sc. thesis, Institute for Informatics, University of Potsdam (2009)Google Scholar
  26. 26.
    Robinson, N., Gretton, C., Pham, D., Sattar, A.: SAT-based parallel planning using a split representation of actions. In: Gerevini, A., Howe, A., Cesta, A., Refanidis, I. (eds.) Proceedings of the Nineteenth International Conference on Automated Planning and Scheduling (ICAPS 2009), pp. 281–288. AAAI Press (2009)Google Scholar
  27. 27.
    Gebser, M., Grote, T., Schaub, T.: Coala: A Compiler from Action Languages to ASP. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 360–364. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Gebser, M., Sabuncu, O., Schaub, T.: An incremental answer set programming based system for finite model computation. AI Communications 24(2), 195–212 (2011)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming. In: [31], pp. 54–66Google Scholar
  30. 30.
    Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream reasoning with answer set programming: Preliminary report. In: Eiter, T., McIlraith, S. (eds.) Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2012). AAAI Press (to appear, 2012)Google Scholar
  31. 31.
    Delgrande, J.P., Faber, W. (eds.): LPNMR 2011. LNCS (LNAI), vol. 6645. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  32. 32.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin Gebser
    • 1
  • Roland Kaufmann
    • 1
  • Torsten Schaub
    • 1
  1. 1.Universität PotsdamGermany

Personalised recommendations