Correct Reasoning pp 229-246 | Cite as
Applications of Action Languages in Cognitive Robotics
Chapter
Abstract
We summarize some applications of action languages in robotics, focusing on the following three challenges: 1) bridging the gap between low-level continuous geometric reasoning and high-level discrete causal reasoning; 2) embedding background/commonsense knowledge in high-level reasoning; 3) planning/prediction with complex (temporal) goals/constraints. We discuss how these challenges can be handled using computational methods of action languages, and elaborate on the usefulness of action languages to extend the classical 3-layer robot control architecture.
Keywords
Logic Program Motion Planning Action Language Geometric Reasoning Domain Description
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Aker, E., Erdogan, A., Erdem, E., Patoglu, V.: Causal Reasoning for Planning and Coordination of Multiple Housekeeping Robots. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 311–316. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 2.Aker, E., Erdogan, A., Erdem, E., Patoglu, V.: Housekeeping with multiple autonomous robots: Representation, reasoning and execution. In: Proc. of Commonsense (2011)Google Scholar
- 3.Akman, V., Erdogan, S.T., Lee, J., Lifschitz, V., Turner, H.: Representing the zoo world and the traffic world in the language of the causal calculator. Artificial Intelligence 153(1-2), 105–140 (2004)CrossRefMATHGoogle Scholar
- 4.Baral, C., Chancellor, K., Tran, N., Tran, N.: Representing and reasoning about signal networks: an illustration using nfkappab dependent signaling pathways. In: Proc. of CSB, pp. 623–628 (2003)Google Scholar
- 5.Baral, C., Gelfond, M.: Representing concurrent actions in extended logic programming. In: Proc. of IJCAI, pp. 866–873 (1993)Google Scholar
- 6.Baral, C., Gelfond, M.: Reasoning agents in dynamic domains, pp. 257–279. Kluwer Academic Publishers (2000)Google Scholar
- 7.Baral, C., Gelfond, M.: Reasoning about intended actions. In: Proc. of AAAI, pp. 689–694 (2005)Google Scholar
- 8.Baral, C., Gelfond, M., Provetti, A.: Representing actions: Laws, observations and hypotheses. Journal of Logic Programming 31(1-3), 201–243 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 9.Beetz, M., Buss, M., Wollherr, D.: Cognitive Technical Systems — What Is the Role of Artificial Intelligence? In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 19–42. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 10.Bornscheuer, S.E., Thielscher, M.: Representing Concurrent Actions and Solving Conflicts. In: Dreschler-Fischer, L., Nebel, B. (eds.) KI 1994. LNCS, vol. 861, pp. 16–27. Springer, Heidelberg (1994)CrossRefGoogle Scholar
- 11.Bornscheuer, S.E., Thielscher, M.: Representing concurrent actions and solving conflicts. Logic Journal of the IGPL 4(3), 355–368 (1996)MathSciNetCrossRefMATHGoogle Scholar
- 12.Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communications of ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
- 13.Cabalar, P.: Pertinence for Causal Representation of Action Domains. Ph.D. thesis, University of Corunna (2001)Google Scholar
- 14.Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E., Patoglu, V.: Bridging the Gap between High-Level Reasoning and Low-Level Control. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 342–354. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 15.Casolary, M., Lee, J.: Representing the language of the causal calculator in answer set programming. In: Proc. of ICLP (Technical Communications), pp. 51–61 (2011)Google Scholar
- 16.Delgrande, J.P., Schaub, T., Tompits, H.: An extended query language for action languages and its application to aggregates and preferences. In: Proc. of NMR, pp. 362–370 (2006)Google Scholar
- 17.Doherty, P., Gustafsson, J., Karlsson, L., Kvarnström, J.: Tal: Temporal action logics language specification and tutorial. ETAI 2, 273–306 (1998)MathSciNetGoogle Scholar
- 18.Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., Nebel, B.: Semantic attachments for domain-independent planning systems. In: Proc. of ICAPS (2009)Google Scholar
- 19.Dworschak, S., Grell, S., Nikiforova, V.J., Schaub, T., Selbig, J.: Modeling biological networks by action languages via answer set programming. Constraints 13(1-2), 21–65 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 20.Dworschak, S., Grote, T., König, A., Schaub, T., Veber, P.: The system bioc for reasoning about biological models in action language c. In: Proc. of ICTAI (1), pp. 11–18 (2008)Google Scholar
- 21.Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
- 22.Eiter, T., Erdem, E., Fink, M., Senko, J.: Updating action domain descriptions. Artificial Intelligence 174(15), 1172–1221 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 23.Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to knowledge-state planning, II: The DLV\(^{\mbox{k}}\) system. Artificial Intelligence 144(1–2), 157–211 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 24.Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A Deductive System for Non-monotonic Reasoning. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 363–374. Springer, Heidelberg (1997)CrossRefGoogle Scholar
- 25.Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., Uras, T.: Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation. In: Proc. of ICRA, pp. 4575–4581 (2011)Google Scholar
- 26.Erdem, E., Lifschitz, V., Wong, M.D.F.: Wire Routing and Satisfiability Planning. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 822–836. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 27.Fox, M., Long, D.: Pddl2.1: An extension to pddl for expressing temporal planning domains. J. Artif. Intell. Res (JAIR) 20, 61–124 (2003)MATHGoogle Scholar
- 28.Gebser, M., Grote, T., Schaub, T.: Coala: A Compiler from Action Languages to ASP. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 360–364. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 29.Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an Incremental ASP Solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 30.Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.T.: Potassco: The potsdam answer set solving collection. AI Communications 24(2), 107–124 (2011)MathSciNetMATHGoogle Scholar
- 31.Gelfond, M., Inclezan, D.: Yet another modular action language. In: Proc. of SEA, pp. 64–78 (2009)Google Scholar
- 32.Gelfond, M., Lifschitz, V.: Representing actions in extended logic programming. In: Proc. of the Joint International Conference and Symposium on Logic Programming, pp. 559–573 (1992)Google Scholar
- 33.Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. Journal of Logic Programming 17(2/3&4), 301–321 (1993)MathSciNetCrossRefMATHGoogle Scholar
- 34.Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2, 193–210 (1998)MathSciNetGoogle Scholar
- 35.Giunchiglia, E., Kartha, G.N., Lifschitz, V.: Representing action: Indeterminacy and ramifications. Artificial Intelligence 95(2), 409–438 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 36.Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories. Artificial Intelligence 153(1–2), 49–104 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 37.Giunchiglia, E., Lifschitz, V.: Dependent fluents. In: Proc. of IJCAI, pp. 1964–1969 (1995)Google Scholar
- 38.Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary report. In: Proc. of AAAI/IAAI, pp. 623–630 (1998)Google Scholar
- 39.Gravot, F., Cambon, S., Alami, R.: aSyMov:A Planner That Deals with Intricate Symbolic and Geometric Problems. In: Robotics Research the Eleventh International Symposium. Springer Tracts in Advanced Robotics, vol. 15, pp. 100–110. Springer (2005)Google Scholar
- 40.Haspalamutgil, K.: Multi-Robot Systems in Cognitive Factories: Representation, Reasoning, Execution and Monitoring. Master’s thesis, Sabanci University, Istanbul, Turkey (2011)Google Scholar
- 41.Hauser, K., Latombe, J.C.: Integrating task and PRM motion planning: Dealing with many infeasible motion planning queries. In: Workshop on Bridging the Gap between Task and Motion Planning at ICAPS (2009)Google Scholar
- 42.Hoffmann, J., Nebel, B.: The ff planning system: Fast plan generation through heuristic search. J. Artif. Intell. Res (JAIR) 14, 253–302 (2001)MATHGoogle Scholar
- 43.Hopton, L., Cliffe, O., De Vos, M., Padget, J.: AQL: A Query Language for Action Domains Modelled Using Answer Set Programming. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 437–443. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 44.Kaelbling, L.P., Lozano-Perez, T.: Hierarchical planning in the now. In: Proc. of ICRA Workshop on Mobile Manipulation (2010)Google Scholar
- 45.Kartha, G.N., Lifschitz, V.: Actions with indirect effects (preliminary report). In: Proc. of KR, pp. 341–350 (1994)Google Scholar
- 46.Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95 (1986)CrossRefGoogle Scholar
- 47.Latombe, J.C.: Robot Motion Planning. Kluwer Academic, Dordrecht (1991)CrossRefMATHGoogle Scholar
- 48.Levesque, H., Lakemeyer, G.: Cognitive robotics. In: Handbook of Knowledge Representation. Elsevier (2007)Google Scholar
- 49.Levesque, H.J., Pirri, F., Reiter, R.: Foundations for the situation calculus. ETAI 2, 159–178 (1998)Google Scholar
- 50.Lifschitz, V.: Two components of an action language. Annals of Mathematics in Artificial Intelligence 21(2–4), 305–320 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 51.Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 357–373. Springer (1999)Google Scholar
- 52.Lifschitz, V.: What is answer set programming? In: Proc. of. AAAI, pp. 1594–1597 (2008)Google Scholar
- 53.Lifschitz, V., Ren, W.: A modular action description language. In: Proc. of AAAI (2006)Google Scholar
- 54.Lifschitz, V., Turner, H.: Representing Transition Systems by Logic Programs. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 92–106. Springer, Heidelberg (1999)CrossRefGoogle Scholar
- 55.Liu, H., Singh, P.: ConceptNet: A practical commonsense reasoning toolkit. BT Technology Journal 22 (2004)Google Scholar
- 56.Marek, V., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer (1999)Google Scholar
- 57.McCain, N.: Causality in Commonsense Reasoning about Actions. Ph.D. thesis, University of Texas at Austin (1997)Google Scholar
- 58.McCain, N., Turner, H.: A causal theory of ramifications and qualifications. In: Proc. of IJCAI, pp. 1978–1984 (1995)Google Scholar
- 59.McCain, N., Turner, H.: Causal theories of action and change. In: Proc. of AAAI/IAAI, pp. 460–465 (1997)Google Scholar
- 60.McCarthy, J.: Situations, actions, and causal laws. Tech. rep., Stanford University (1963)Google Scholar
- 61.Miller, R., Shanahan, M.: The event calculus in classical logic - alternative axiomatisations. ETAI 3(A), 77–105 (1999)MathSciNetGoogle Scholar
- 62.Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 63.Plaku, E., Hager, G.D.: Sampling-based motion and symbolic action planning with geometric and differential constraints. In: Proc. of ICRA, pp. 5002–5008 (2010)Google Scholar
- 64.Sandewall, E.: Features and Fluents: A Systematic Approach to the Representation of Knowledge about Dynamical Systems. Oxford University Press (1994)Google Scholar
- 65.Sandewall, E.: Cognitive robotics logic and its metatheory: Features and fluents revisited. ETAI 2, 307–329 (1998)MathSciNetGoogle Scholar
- 66.Son, T.C., Baral, C.: Formalizing sensing actions a transition function based approach. Artificial Intelligence 125(1–2), 19–91 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 67.Thielscher, M.: Introduction to the fluent calculus. ETAI 2, 179–192 (1998)MathSciNetGoogle Scholar
- 68.Tran, N., Baral, C.: Reasoning about non-immediate triggers in biological networks. Ann. Math. Artif. Intell. 51(2–4), 267–293 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 69.Tran, N., Baral, C.: Hypothesizing about signaling networks. J. Applied Logic 7(3), 253–274 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 70.Tran, N., Baral, C., Nagaraj, V.J., Joshi, L.: Knowledge-Based Integrative Framework for Hypothesis Formation in Biochemical Networks. In: Ludäscher, B., Raschid, L. (eds.) DILS 2005. LNCS (LNBI), vol. 3615, pp. 121–136. Springer, Heidelberg (2005)CrossRefGoogle Scholar
- 71.Tran, N., Baral, C., Shankland, C.: Issues in reasoning about interaction networks in cells: Necessity of event ordering knowledge. In: Proc. of AAAI, pp. 676–681 (2005)Google Scholar
- 72.Turner, H.: Representing actions in logic programs and default theories: A situation calculus approach. Journal of Logic Programming 31(1–3), 245–298 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 73.Uras, T.: Applications of AI Planning in Genome Rearrangement and in Multi-Robot Systems. Master’s thesis, Sabanci University, Istanbul, Turkey (2011)Google Scholar
- 74.Wolfe, J., Marthi, B., Russell, S.: Combined task and motion planning for mobile manipulation. In: International Conference on Automated Planning and Scheduling (2010)Google Scholar
- 75.Zaeh, M., Beetz, M., Shea, K., Reinhart, G., Bender, K., Lau, C., Ostgathe, M., Vogl, W., Wiesbeck, M., Engelhard, M., Ertelt, C., Rühr, T., Friedrich, M., Herle, S.: The cognitive factory. In: Changeable and Reconf. Manufacturing Systems, pp. 355–371 (2009)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2012