Formal Verification of Compiler Transformations on Polychronous Equations

  • Van Chan Ngo
  • Jean-Pierre Talpin
  • Thierry Gautier
  • Paul Le Guernic
  • Loïc Besnard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7321)

Abstract

In this paper, adopting the translation validation approach, we present a formal verification process to prove the correctness of compiler transformations on systems of polychronous equations. We encode the source programs and the transformations with polynomial dynamical systems and prove that the transformations preserve the abstract clocks and clock relations of the source programs. In order to carry out the correctness proof, an appropriate relation called refinement and an automated proof method are presented. Each individual transformation or optimization step of the compiler is followed by our validation process which proves the correctness of this running. The compiler will continue its work if and only if the correctness is proved positively. In this paper, the highly optimizing, industrial compiler from the synchronous language SIGNAL to C is addressed.

Keywords

Formal Verification Translation Validation Validated Compiler Multi-clocked Synchronous Programs Polychronous Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers C-35(8), 677–691 (1986)CrossRefGoogle Scholar
  2. 2.
    Le Borgne, M., Benveniste, A., Le Guernic, P.: Dynamical systems over Galois fields and control problems. In: Proceedings of 33th IEEE on Decision and Control, vol. 3, pp. 1505–1509 (1991)Google Scholar
  3. 3.
    Besnard, L., Gautier, T., Le Guernic, P., Talpin, J.-P.: Compilation of polychronous data flow equations. In: Synthesis of Embedded Software. Springer (2010)Google Scholar
  4. 4.
    Besnard, L., Gautier, T., Moy, M., Talpin, J.-P., Johnson, K., Maraninchi, F.: Automatic translation of C/C++ parallel code into synchronous formalism using an SSA intermediate form. In: Proceedings of the 9th Workshop on Automated Verification of Critical Systems, AVOCS (2009)Google Scholar
  5. 5.
    Dutertre, B., Le Borgne, M., Marchand, H.: SIGALI: un système de calcul formel pour la vérification de programmes SIGNAL. Manuel d’utilisation. Note technique, non publiée (December 1998)Google Scholar
  6. 6.
    Park, D.: Concurrency and Automata on Infinite Sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  7. 7.
    Gamatie, A.: Designing embedded systems with the SIGNAL programming: Synchronous, Reactive Specification. Springer, New York (2009) ISBN 978-1-4419-0940-4Google Scholar
  8. 8.
    Le Guernic, P., Talpin, J.-P., Le Lann, J.-C.: Polychrony for system design. Journal for Circuits, Systems and Computers 12(3), 261–304 (2003)CrossRefGoogle Scholar
  9. 9.
    Halbwachs, N.: A synchronous language at work: the story of LUSTRE. In: 3th ACM-IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE 2005) (July 2005)Google Scholar
  10. 10.
    Kouchnarenko, O., Pinchinat, S.: Intensional approaches for symbolic methods. Electronic Notes in Theoretical Computer Science (August 1998)Google Scholar
  11. 11.
    Marchand, H., Rutten, H., Le Borgne, E., Samaan, M.: Formal verification of SIGNAL programs: Application to a power transformer station controller. Science of Computer Programming 41(1), 85–104 (2001)MATHCrossRefGoogle Scholar
  12. 12.
  13. 13.
    Peralta, J.C., Gautier, T., Besnard, L., Le Guernic, P.: LTSs for translation validation of (multi-clocked) SIGNAL specifications. In: 8th IEEE/ACM International Conference on Formal Method and Models for Codesign, MEMOCODE (2010)Google Scholar
  14. 14.
    Pinchinat, S., Marchand, H., Le Borgne, M.: Symbolic abstractions of automata and their application to the supervisory control problem. In: INRIA Technical Reports No 1279, pp. 1–29 (November 1999)Google Scholar
  15. 15.
    Pnueli, A., Shtrichman, O., Siegel, M.D.: Translation validation: From SIGNAL to C. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol. 1710, pp. 231–255. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Milner, R.: Operational and algebraic semantics of concurrent processes. Research Report ECS-LFCS-88-46, Lab. for Foundations of Computer Science, Edinburgh (February 1988)Google Scholar
  17. 17.
    Van Glabbeek, R.J.: The Linear Time-Branching Time Spectrum II: The Semantics of Sequential Systems with Silent Moves (Extended Abstract). In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    VeriSync Project, http://www.irit.fr/Verisync/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Van Chan Ngo
    • 1
  • Jean-Pierre Talpin
    • 1
  • Thierry Gautier
    • 1
  • Paul Le Guernic
    • 1
  • Loïc Besnard
    • 2
  1. 1.INRIA Rennes-Bretagne AtlantiqueRennes cedexFrance
  2. 2.IRISA/CNRSRennes cedexFrance

Personalised recommendations