Rely/Guarantee Reasoning for Teleo-reactive Programs over Multiple Time Bands

  • Brijesh Dongol
  • Ian J. Hayes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7321)

Abstract

A complex real-time system consists of components at multiple time abstractions with varying notions of granularity and precision. Existing hybrid frameworks only allow reasoning at a single granularity and at an absolute level of precision, which can be problematic because the models that are developed can become unimplementable. In this paper, we develop a framework that incorporates time bands so that the behaviour of each component may be specified at a time granularity that is appropriate for the component and its properties. We implement our controllers using teleo-reactive programs, which are high-level programs that are well-suited to controlling reactive systems in dynamic environments. We develop rely/guarantee-style reasoning rules and as an example, prove properties of a well-known mine-pump system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broy, M.: Refinement of time. Theor. Comput. Sci. 253(1), 3–26 (2001)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Burns, A., Baxter, G.: Time bands in systems structure. In: Structure for Dependability, pp. 74–88. Springer (2006)Google Scholar
  3. 3.
    Burns, A., Hayes, I.J.: A timeband framework for modelling real-time systems. Real-Time Systems 45(1), 106–142 (2010)MATHCrossRefGoogle Scholar
  4. 4.
    Burns, A., Lister, A.M.: A framework for building dependable systems. Comput. J. 34(2), 173–181 (1991)CrossRefGoogle Scholar
  5. 5.
    Dongol, B., Hayes, I.J.: Approximating idealised real-time specifications using time bands. In: AVoCS 2011. ECEASST, vol. 46, pp. 1–16. EASST (2012)Google Scholar
  6. 6.
    Dongol, B., Hayes, I.J.: Deriving real-time action systems in a sampling logic. Sci. Comput. Program. (Special Issue of MPC 2010) (2012) (accepted October 17, 2011)Google Scholar
  7. 7.
    Dongol, B., Hayes, I.J., Robinson, P.J.: Reasoning about real-time teleo-reactive programs. Technical Report SSE-2010-01, The University of Queensland (2010)Google Scholar
  8. 8.
    Gargantini, A., Morzenti, A.: Automated deductive requirements analysis of critical systems. ACM Trans. Softw. Eng. Methodol. 10, 255–307 (2001)CrossRefGoogle Scholar
  9. 9.
    Gubisch, G., Steinbauer, G., Weiglhofer, M., Wotawa, F.: A Teleo-Reactive Architecture for Fast, Reactive and Robust Control of Mobile Robots. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 541–550. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Guelev, D.P., Hung, D.V.: Prefix and projection onto state in duration calculus. Electr. Notes Theor. Comput. Sci. 65(6), 101–119 (2002)CrossRefGoogle Scholar
  11. 11.
    Hayes, I.J., Burns, A., Dongol, B., Jones, C.: Comparing models of nondeterministic expression evaluation. Technical Report CS-TR-1273, Newcastle University (2011)Google Scholar
  12. 12.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292. IEEE Computer Society, Washington, DC (1996)Google Scholar
  13. 13.
    Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Assume-Guarantee Refinement Between Different Time Scales. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 208–221. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston (2002)Google Scholar
  15. 15.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive and Concurrent Systems: Specification. Springer-Verlag New York, Inc. (1992)Google Scholar
  16. 16.
    Montanari, A., Ratto, E., Corsetti, E., Morzenti, A.: Embedding time granularity in logical specifications of real-time systems. In: Euromicro 1991, pp. 88–97 (June 1991)Google Scholar
  17. 17.
    Moszkowski, B.C.: Compositional reasoning about projected and infinite time. In: ICECCS, pp. 238–245. IEEE Computer Society (1995)Google Scholar
  18. 18.
    Nilsson, N.J.: Teleo-reactive programs and the triple-tower architecture. Electronic Transactions on Artificial Intelligence 5, 99–110 (2001)Google Scholar
  19. 19.
    Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theor. Comput. Sci. 290, 937–973 (2003)MATHCrossRefGoogle Scholar
  20. 20.
    Wei, K., Woodcock, J., Burns, A.: Formalising the timebands model in timed Circus. Technical report, University of York (June 2010)Google Scholar
  21. 21.
    Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. Form. Methods Syst. Des. 33, 45–84 (2008)MATHCrossRefGoogle Scholar
  22. 22.
    Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems. EATCS: Monographs in Theoretical Computer Science. Springer (2004)Google Scholar
  23. 23.
    Zhou, C., Ravn, A.P., Hansen, M.R.: An Extended Duration Calculus for Hybrid Real-Time Systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 36–59. Springer, Heidelberg (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Brijesh Dongol
    • 1
    • 2
  • Ian J. Hayes
    • 1
  1. 1.School of Information Technology and Electrical EngineeringThe University of QueenslandAustralia
  2. 2.Department of Computer ScienceThe University of SheffieldUK

Personalised recommendations