Towards Robust Visual Knife Detection in Images: Active Appearance Models Initialised with Shape-Specific Interest Points

  • Marcin Kmieć
  • Andrzej Głowacz
  • Andrzej Dziech
Part of the Communications in Computer and Information Science book series (CCIS, volume 287)

Abstract

In this paper a novel application of Active Appearance Models to detecting knives in images is presented. Contrary to popular applications of this computer vision algorithm such as face segmentation or medical image analysis, we use it not only to locate an instance of an object that is known to exist in the analysed image. Using an interest point typical to knives we try to answer the question, whether a knife is or is non-existent in the image in question. We propose an entire detection scheme and examine its performance on a sample test set. The work presented in this paper aims at creating a robust visual knife detector that will find application in computerised monitoring of the public using CCTV.

Keywords

Active Appearance Models Knife Detection Computerised Video Surveillance Harris Interest Point Detector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tickner, A.H., Poulton, E.C.: Monitoring up to 16 synthetic television pictures showing a great deal of movement. Ergonomics 16(4), 381–401 (1973)CrossRefGoogle Scholar
  2. 2.
    Beichel, R., Bischof, H., Leberl, F., Sonka, M.: Robust active appearance models and their application to medical image analysis. IEEE Transactions on Medical Imaging 24(9), 1151–1169 (2005)CrossRefGoogle Scholar
  3. 3.
    Jiang, Y., Zhang, Z., Cen, F., Tsui, H.T., Lau, T.K.: An enhanced appearance model for ultrasound image segmentation. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, August 23-26, vol. 3, pp. 802–805 (2004)Google Scholar
  4. 4.
    Leung, K.Y.E., van Stralen, M., van Burken, G., van der Steen, A.F.W., de Jong, N., Bosch, J.G.: Automatic 3D left ventricular border detection using active appearance models. In: 2010 IEEE Ultrasonics Symposium (IUS), October 11-14, pp. 197–200 (2010)Google Scholar
  5. 5.
    Edwards, G.J., Taylor, C.J., Cootes, T.F.: Interpreting face images using active appearance models. In: Proceedings of Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998, April 14-16, pp. 300–305 (1998)Google Scholar
  6. 6.
    Kim, D., Sung, J.: A Real-Time Face Tracking using the Stereo Active Appearance Model. In: 2006 IEEE International Conference on Image Processing, October 8-11, pp. 2833–2836 (2006)Google Scholar
  7. 7.
    Leung, K.Y.E., van Stralen, M., van Burken, G., van der Steen, A.F.W., de Jong, N., Bosch, J.G.: Automatic 3D left ventricular border detection using active appearance models. In: 2010 IEEE Ultrasonics Symposium (IUS), October 11-14, pp. 197–200 (2010)Google Scholar
  8. 8.
    Kmieć, M., Glowacz, A.: An Approach to Robust Visual Knife Detection (manuscript in submission)Google Scholar
  9. 9.
    Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Kauai, USA (2001)Google Scholar
  10. 10.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, June 25, vol. 1, pp. 886–893 (2005)Google Scholar
  11. 11.
    Buch, N., Orwell, J., Velastin, S.A.: 3D Extended Histogram of Oriented Gradients (3DHOG) for Classification of Road Users in Urban Scenes, Kingston University, UK (2009)Google Scholar
  12. 12.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Cootes, T.F., Taylor, C.J.: Statistical Models of Appearance for Computer Vision. Tech. report, University of Manchester (2001)Google Scholar
  14. 14.
    Mitchell, S., Lelieveldt, B., Geest, R., Schaap, J., Reiber, J., Sonka, M.: Segmentation of cardiacMR images: An active appearance model approach. In: Medical Imaging 2000: Image Processing, San Diego CA, SPIE, vol. 1, pp. 224–234. SPIE (2000)Google Scholar
  15. 15.
    van Ginneken, B., Stegmann, M.B., Loog, M.: Segmentation of anatomical structures in chestradiographs using supervised methods: A comparative study on a public database. Medical Image Analysis (2004)Google Scholar
  16. 16.
    Stegmann, M.B., Gomez, D.D.: A brief introduction to statistical shape analysis. Technical report, Informatics and Mathematical Modelling, Technical University of Denmark, DTU (March 2002)Google Scholar
  17. 17.
    Derpanis, K.G.: The Harris Corner Detector (October 2004)Google Scholar
  18. 18.
    Cristinacce, D., Cootes, T.F.: A comparison of shape constrained facial feature detectors. In: Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004, May 17-19, pp. 375–380 (2004)Google Scholar
  19. 19.
    Tadeusiewicz, R., Korohoda, P.: Computer Analysis and Image Processing, FPT, Cracow (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marcin Kmieć
    • 1
  • Andrzej Głowacz
    • 2
  • Andrzej Dziech
    • 2
  1. 1.Department of AutomaticsAGH University of Science and TechnologyKrakowPoland
  2. 2.Department of TelecommunicationsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations