Advertisement

Minimax Methods

  • Zhitao Zhang
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 29)

Abstract

In Chap. 3, we present the minimax methods including the Mountain Pass Theorem, linking methods, local linking methods, and critical groups; next, we treat some applications to elliptic boundary value problems.

Keywords

Hilbert Space Dirichlet Boundary Condition Essential Spectrum Real Hilbert Space Elliptic Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 11.
    A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 35.
    H. Brezis, L. Nirenberg, Remarks on finding critical points. Commun. Pure Appl. Math. 64, 939–963 (1991) MathSciNetCrossRefGoogle Scholar
  3. 49.
    K.-C. Chang, Infinite Dimensional Morse Theory and Multiple Solutions Problems (Birkhäuser, Basel, 1993) CrossRefGoogle Scholar
  4. 51.
    K.-C. Chang, S. Li, J. Liu, Remarks on multiple solutions for asymptotically linear elliptic boundary value problems. Topol. Methods Nonlinear Anal. 3, 179–187 (1994) MathSciNetzbMATHGoogle Scholar
  5. 125.
    S. Li, J. Liu, Morse theory and asymptotically linear Hamiltonian systems. J. Differ. Equ. 78, 53–73 (1989) zbMATHCrossRefGoogle Scholar
  6. 126.
    S. Li, M. Willem, Applications of local linking to critical point theory. J. Math. Anal. Appl. 189(1), 6–32 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 137.
    J. Liu, The Morse index of a saddle point. Syst. Sci. Math. Sci. 2, 32–39 (1989) zbMATHGoogle Scholar
  8. 139.
    J. Liu, S. Li, An existence theorem for multiple critical points and its application. Kexue Tongbao 29(17), 1025–1027 (1984) (In Chinese) MathSciNetGoogle Scholar
  9. 149.
    R.S. Palais, Homotopy theory of infinite dimensional manifolds. Topology 5, 1–16 (1966) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 151.
    K. Perera, Critical groups of critical points produced by local linking with applications. Abstr. Appl. Anal. 3(3–4), 437–446 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 159.
    P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 65 (Am. Math. Soc., Providence, 1986). Published for the Conference Board of the Mathematical Sciences, Washington, DC Google Scholar
  12. 168.
    M. Struwe, Variational Methods, 3rd edn. (Springer, Berlin, 2000) zbMATHCrossRefGoogle Scholar
  13. 186.
    Z.Q. Wang, On a superlinear elliptic equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 8, 43–57 (1991) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhitao Zhang
    • 1
  1. 1.Academy of Mathematics & Systems ScienceThe Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations