Advertisement

The Fundamental Groupoid

  • Jakob Stix
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2054)

Abstract

We recall the fundamental groupoid of a connected, quasi-compact scheme X as in Grothendieck (Documents Mathématiques, vol. 3, 2003) Exposé V, with special attention towards the effect of a k-structure in case of a variety Xk. Galois invariant base points are discussed and related to the profinite Kummer map. In Sect. 2.6, we address the reformulation of the section conjecture in terms of higher étale homotopy theory.

References

  1. BoKa72.
    Bousfield, A.K., Kan, D.M.: Homotopy limits, completions and localizations. Lecture Notes in Mathematics, vol. 304, vi + 348 pp. Springer, Berlin (1972)Google Scholar
  2. Ca91.
    Carlsson, G.: Equivariant stable homotopy and Sullivan’s conjecture. Invent. Math. 103, 497–525 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  3. HaSch10.
    Harpaz, Y., Schlank, T.M.: Homotopy obstructions to rational points, preprint. http://arxiv.org/abs/1110.0164 arXiv: 1110.0164v1 [math.AG] (October 2011)
  4. Pa10b.
    Pál, A.: Homotopy sections and rational points on algebraic varieties. http://arxiv.org/abs/1002.1731v2 arXiv: 1002. 1731v2 [math.NT] (March 2010)
  5. Qu08.
    Quick, G.: Profinite homotopy theory. Doc. Math. 13, 585–612 (2008)MathSciNetzbMATHGoogle Scholar
  6. Qu10.
    Quick, G.: Continuous group actions on profinite spaces. J. Pure Appl. Algebra 215, 1024–1039 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. Sch12.
    Schmidt, A.: Motivic aspects of anabelian geometry, in: Galois-Teichmüller Theory and Arithmetic Geometry, Proceedings for a conference in Kyoto (October 2010), H. Nakamura, F. Pop, L. Schneps, A. Tamagawa eds., Advanced Studies in Pure Mathematics 63, 503–517 (2012)Google Scholar
  8. SGA1.
    Grothendieck, A.: Séminaire de Géométrie Algébrique du Bois Marie (SGA 1) 1960–1961: Revêtements étales et groupe fondamental. Documents Mathématiques vol. 3, xviii + 327 pp. Société Mathématique de France (2003)Google Scholar
  9. Su71.
    Sullivan, D.: Geometric topology, Part I: Localization, periodicity, and Galois symmetry. Massachusetts Institute of Technology, 432 pp., revised and annotated version, xiii + 284 pp. Cambridge. http://www.maths.ed.ac.uk/~aar/surgery/gtop.pdf www.maths.ed.ac.uk/ ∼ aar/surgery/gtop.pdf (1971)

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jakob Stix
    • 1
  1. 1.Mathematics Center Heidelberg (MATCH)University of HeidelbergHeidelbergGermany

Personalised recommendations