On the Section Conjecture for Torsors

  • Jakob Stix
Part of the Lecture Notes in Mathematics book series (LNM, volume 2054)


We explore the weak section conjecture for torsors W under a connected algebraic group Gk: we ask whether a torsor is necessarily trivial if its extension \({\pi }_{{}_{1}}(W/k)\) splits. Continuous Kummer theory, or a direct construction using neighbourhoods, shows that \({\pi }_{{}_{1}}(W/k)\) splits if and only if the torsor W is compatibly divisible by étale isogenies, see Corollary 175. Therefore the weak section conjecture holds for torsors under tori and, if G is an abelian variety, is linked to Bashmakov’s problem. As an application, we study the relative Brauer group of hyperbolic curves with completion of genus 0 and show a weak section conjecture for such curves, see Proposition 187.Torsors under algebraic groups occur in the context of the section conjecture for a smooth projective curve as the universal Albanese torsor \({\mathrm{Alb}}_{X}^{1} ={ \mathrm{Pic}}_{X}^{1}\) and via the abelianization of sections, see Definition 26. Zero cycles on a smooth projective variety Xk can be considered as an abelianized version of a rational point. We construct a map that assigns to a zero cycle z of degree 1 on X a section s z of the abelianized fundamental group extension \({\pi }_{1}^{\mathrm{ab}}(X/k)\) that lifts the corresponding section of the rational point of the universal Albanese torsor corresponding to the zero cycle.We work over a field k of characteristic 0.


Algebraic Group Abelian Variety Smooth Projective Variety Profinite Group Algebraic Number Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. BaPa95.
    Bayer-Fluckiger, E., Parimala, R.: Galois cohomology of the classical groups over fields of cohomological dimension \(\leq 2\). Invent. Math. 122, 195–229 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bl79.
    Bloch, S.: Torsion algebraic cycles and a theorem of Roitman. Compos. Math. 39, 107–127 (1979)MathSciNetzbMATHGoogle Scholar
  3. BrSz12.
    Brion, M., Szamuely, T.: Prime-to-p étale covers of algebraic groups, preprint. arXiv: 1109.2802v3 [math.AG] (March 2012)
  4. Ch89.
    Chernousov, V.: The Hasse principle for groups of type E 8. Dokl. Akad. Nauk. SSSR 306, 1059–1063 (1989) (trans: Math. USSR-Izv. 34, 409–423 (1990))Google Scholar
  5. CiSx11.
    Çiperiani, M., Stix, J.: Weil–Châtelet divisible elements of Tate–Shafarevich groups. 1106.4255v1 [math.NT] (March 2011)
  6. CiSx12a.
    Çiperiani, M., Stix, J.: Weil–Châtelet divisible elements in Tate–Shafarevich groups I: The Bashmakov problem for elliptic curves over \(\mathbb{Q}\), to appear in Compositio Math. Google Scholar
  7. CiSx12b.
    Çiperiani, M., Stix, J.: Galois sections for abelian varieties over number fields, preprint, 2012Google Scholar
  8. Gi10.
    Gille, Ph.: Serre’s conjecture II: A survey. In: Garibaldi, S., Sujatha, R., Suresh, V. (eds.) Quadratic Forms, Linear Algebraic Groups, and Cohomology. Developments in Mathematics, vol. 18, pp. 41–56. Springer, Berlin (2010)CrossRefGoogle Scholar
  9. GiSz06.
    Gille, Ph., Szamuely, T.: Central simple algebras and Galois cohomology. In: Cambridge Studies in Advanced Mathematics, vol. 101, xii + 343 pp. Cambridge University Press, Cambridge (2006)Google Scholar
  10. HaSz09.
    Harari, D., Szamuely, T.: Galois sections for abelianized fundamental groups, with an appendix by E.V. Flynn. Math. Annalen 344, 779–800 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. Ha65-75.
    Harder, G.: Über die Galoiskohomologie halbeinfacher Matrizengruppen I. Math. Zeit. 90, 404–428 (1965) Part II; Math. Zeit. 92, 396–415 (1966) Part III; J. Reine Angew. Math. 274/5, 125–138 (1975)Google Scholar
  12. Ja88.
    Jannsen, U.: Continuous étale cohomology. Math. Annalen 280, 207–245 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  13. Kn65.
    Kneser, M.: Galoiskohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern I. Math. Zeit. 88, 40–47 (1965) Part II; Math. Zeit. 89, 250–272 (1965)Google Scholar
  14. Kn69.
    Kneser, M.: Lectures on Galois Cohomology of Classical Groups, ii + 158 pp. Tata Institute, Bombay (1969)Google Scholar
  15. LS57.
    Lang, S., Serre, J.-P.: Sur les revêtements non ramifiés des variétés algébriques. Am. J. Math. 79, 319–330 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  16. Ma55.
    Mattuck, A.: Abelian varieties over p-adic ground fields. Ann. Math. (2) 62, 92–119 (1955)Google Scholar
  17. Mi72.
    Miyanishi, M.: On the algebraic fundamental group of an algebraic group. J. Math. Kyoto Univ. 12, 351–367 (1972)MathSciNetzbMATHGoogle Scholar
  18. PlRa94.
    Platonov, V.P., Rapinchuk, A.: Algebraic groups and number theory. Pure and Applied Mathematics, vol. 139, xii + 614 pp. Academic, New York (1994)Google Scholar
  19. Sch25.
    Schreier, O.: Abstrakte kontinuierliche Gruppen. Abhand. Hamburg 4, 15–32 (1925)zbMATHCrossRefGoogle Scholar
  20. Se51.
    Selmer, E.S.: The Diophantine equation \(a{x}^{3} + b{y}^{3} + c{z}^{3} = 0\). Acta Math. 85, 203–362 (1951)Google Scholar
  21. Se97.
    Serre, J.-P.: Galois Cohomology, new edition, x + 210 pp. Springer, New York (1997)CrossRefGoogle Scholar
  22. SGA1.
    Grothendieck, A.: Séminaire de Géométrie Algébrique du Bois Marie (SGA 1) 1960–1961: Revêtements étales et groupe fondamental. Documents Mathématiques vol. 3, xviii + 327 pp. Société Mathématique de France (2003)Google Scholar
  23. Sk01.
    Skorobogatov, A.: Torsors and rational points. In: Cambridge Tracts in Mathematics, vol. 144, viii + 187 pp. Cambridge University Press, Cambridge (2001)Google Scholar
  24. Wi08.
    Wittenberg, O.: On the Albanese torsors and the elementary obstruction. Math. Annalen 340, 805–838 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  25. Wo09.
    Wolfrath, S.: Die scheingeometrische étale Fundamentalgruppe. Thesis, 62 pp., Universität Regensburg, preprint no. 03/2009Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jakob Stix
    • 1
  1. 1.Mathematics Center Heidelberg (MATCH)University of HeidelbergHeidelbergGermany

Personalised recommendations