Advertisement

Hybrid Metaheuristics for Dynamic and Stochastic Vehicle Routing

  • Ulrike Ritzinger
  • Jakob Puchinger
Part of the Studies in Computational Intelligence book series (SCI, volume 434)

Abstract

Recent developments in telematics, such as the wide spread use of positioning services and mobile communication technologies, allow the exact monitoring of vehicles. These advances build the basis for automatic real-time fleet management systems. To be successful such systems have to rely on optimization algorithms for solving dynamic and stochastic vehicle routing problems based on ingredients such as historical data, stochastic modeling, machine learning, fast shortest-path calculation, fast construction heuristics, and exact and (meta)heuristic optimization methods. This book documents the growing interest in and success of hybrid metaheuristics. They are often used to solve complex and large real-world optimization problems, combining advantages from various fields of computer science and mathematical optimization. Within this chapter the application of such methods for the dynamic and stochastic vehicle routing problem is studied. After a general introduction in this field, the main commonalities of dynamic and stochastic vehicle routing problems are described and a short overview of classical algorithms for these problems is given. Then, in the third part hybrid metaheuristics for dynamic problems vehicle routing problems are be described. The third part focusses on stochastic problems. The fourth part examines the combination of dynamic and stochastic problems. The chapter is concluded with an outlook towards future developments in the field as well as promising open research areas.

Keywords

Travelling Salesman Problem Dynamic Vehicle Vehicle Route Problem Vehicle Route Stochastic Demand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarenga, G., de Abreu Silva, R., Mateus, G.: A hybrid approach for the dynamic vehicle routing problem with time windows. In: Fifth International Conference on Hybrid Intelligent Systems (HIS 2005), 7 pages (November 2005)Google Scholar
  2. 2.
    Alvarenga, G., Mateus, G., de Tomi, G.: A genetic and set partitioning two-phase approach for the vehicle routing problem with time windows. Computers & Operations Research 34(6), 1561–1584 (2007); Part Special Issue: Odysseus 2003 Second International Workshop on Freight Transportation LogisticsGoogle Scholar
  3. 3.
    Attanasio, A., Bregman, J., Ghiani, G., Manni, E.: Real-time fleet management at ecourier ltd. In: Sharda, R., Voss, S., Zeimpekis, V., Tarantilis, C.D., Giaglis, G.M., Minis, I. (eds.) Dynamic Fleet Management. Operations Research/Computer Science Interfaces Series, vol. 38, pp. 219–238. Springer, US (2007)CrossRefGoogle Scholar
  4. 4.
    Attanasio, A., Cordeau, J.-F., Ghiani, G., Laporte, G.: Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput. 30, 377–387 (2004)CrossRefGoogle Scholar
  5. 5.
    Beasley, J.: Route first–cluster second methods for vehicle routing. Omega 11(4), 403–408 (1983)CrossRefGoogle Scholar
  6. 6.
    Bent, R.W., Van Hentenryck, P.: Dynamic vehicle routing with stochastic requests. In: International Joint Conference On Artificial Intelligence, vol. 18, pp. 1362–1363 (2003)Google Scholar
  7. 7.
    Bent, R.W., Van Hentenryck, P.: Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Oper. Res. 52, 977–987 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Berbeglia, G., Cordeau, J.-F., Laporte, G.: A hybrid tabu search and constraint programming algorithm for the dynamic dial-a-ride problem. INFORMS Journal on Computing (2011)Google Scholar
  9. 9.
    Berbeglia, G., Pesant, G., Rousseau, L.-M.: Checking the feasibility of dial-a-ride instances using constraint programming. Transportation Science 45, 399–412 (2011)CrossRefGoogle Scholar
  10. 10.
    Bertsimas, D.J.: A vehicle routing problem with stochastic demand. Oper. Res. 40, 574–585 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., Schiavinotto, T.: Hybrid metaheuristics for the vehicle routing problem with stochastic demands. Journal of Mathematical Modelling and Algorithms 5, 91–110 (2006), doi:10.1007/s10852-005-9033-yMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer (1997)Google Scholar
  13. 13.
    Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing 11(6), 4135–4151 (2011)CrossRefGoogle Scholar
  14. 14.
    Bock, S.: Real-time control of freight forwarder transportation networks by integrating multimodal transport chains. European Journal of Operational Research 200(3), 733–746 (2010)zbMATHCrossRefGoogle Scholar
  15. 15.
    Branchini, R.M., Armentano, V.A., Løkketangen, A.: Adaptive granular local search heuristic for a dynamic vehicle routing problem. Computers and Operations Research 36(11), 2955–2968 (2009)zbMATHCrossRefGoogle Scholar
  16. 16.
    Caramia, M., Italiano, G., Oriolo, G., Pacifici, A., Perugia, A.: Routing a fleet of vehicles for dynamic, combined pickup and delivery services. In: Proceedings of the Symposium on Operation Research 2001, pp. 3–8. Springer (2001)Google Scholar
  17. 17.
    Chen, H.-K., Hsueh, C.-F., Chang, M.-S.: The real-time time-dependent vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review 42(5), 383–408 (2006)CrossRefGoogle Scholar
  18. 18.
    Chen, Z.-L., Xu, H.: Dynamic column generation for dynamic vehicle routing with time windows. Transportation Science 40, 74–88 (2006)CrossRefGoogle Scholar
  19. 19.
    Cordeau, J.-F., Laporte, G.: The dial-a-ride problem: models and algorithms. Annals of Operations Research 153, 29–46 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Cordeau, J.-F., Laporte, G., Savelsbergh, M.W., Vigo, D.: Vehicle routing. In: Barnhart, C., Laporte, G. (eds.) Transportation. Handbooks in Operations Research and Management Science, vol. 14, ch. 6, pp. 367–428. Elsevier (2007)Google Scholar
  21. 21.
    Crainic, T.G.: Parallel solution methods for vehicle routing problems. In: Golden, et al. (eds.), [35], p. 589 (2008)Google Scholar
  22. 22.
    Créput, J.-C., Hajjam, A., Koukam, A., Kuhn, O.: Self-organizing maps in population based metaheuristic to the dynamic vehicle routing problem. Journal of Combinatorial Optimization, 1–22 (2011)Google Scholar
  23. 23.
    Dror, M., Laporte, G., Trudeau, P.: Vehicle routing with stochastic demands: Properties and solution frameworks. Transportation Science 23(3), 166–176 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Fabri, A., Recht, P.: On dynamic pickup and delivery vehicle routing with several time windows and waiting times. Transportation Research Part B: Methodological 40(4), 335–350 (2006)CrossRefGoogle Scholar
  25. 25.
    Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98, 23–47 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Flatberg, T., Hasle, G., Kloster, O., Nilssen, E.J., Riise, A.: Dynamic and stochastic vehicle routing in practice. In: Sharda, R., Voss, S., Zeimpekis, V., Tarantilis, C.D., Giaglis, G.M., Minis, I. (eds.) Dynamic Fleet Management. Operations Research/Computer Science Interfaces Series, vol. 38, pp. 41–63. Springer, US (2007), doi:10.1007/978-0-387-71722-7_3Google Scholar
  27. 27.
    Fleischmann, B., Gnutzmann, S., Sandvoss, E.: Dynamic vehicle routing based on online traffic information. Transportation Science 38, 420–433 (2004)CrossRefGoogle Scholar
  28. 28.
    Fleischmann, B., Gnutzmann, S., Sandvoss, E.: Dynamic vehicle routing based on online traffic information. Transportation Science 38, 420–433 (2004)CrossRefGoogle Scholar
  29. 29.
    Fu, L., Rilett, L.R.: Expected shortest paths in dynamic and stochastic traffic networks. Transportation Research Part B: Methodological 32(7), 499–516 (1998)CrossRefGoogle Scholar
  30. 30.
    Gendreau, M., Guertin, F., Potvin, J.-Y., Taillard, E.: Parallel tabu search for real-time vehicle routing and dispatching. Transportation Science 33, 381–390 (1999)zbMATHCrossRefGoogle Scholar
  31. 31.
    Gendreau, M., Laporte, G., Séguin, R.: Stochastic vehicle routing. European Journal of Operational Research 88(1), 3–12 (1996)zbMATHCrossRefGoogle Scholar
  32. 32.
    Gendreau, M., Potvin, J.-Y., Bräumlaysy, O., Hasle, G., Løkketangen, A.: Metaheuristics for the vehicle routing problem and its extensions: A categorized bibliography. In: Golden, et al. (eds.) [35], pp. 143–169 (2008)Google Scholar
  33. 33.
    Goel, A.: Fleet Telematics. Operations Research/Computer Science Interfaces Series, vol. 40. Springer, US (2008)Google Scholar
  34. 34.
    Golden, B., Dearmon, J., Baker, E.: Computational experiments with algorithms for a class of routing problems. Computers & Operations Research 10(1), 47–59 (1983)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Golden, B., Raghavan, S., Wasil, E. (eds.): The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces Series, vol. 43. Springer (2008)Google Scholar
  36. 36.
    Gutjahr, W.J., Katzensteiner, S., Reiter, P.: A VNS Algorithm for Noisy Problems and its Application to Project Portfolio Analysis. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665, pp. 93–104. Springer, Heidelberg (2007), doi:10.1007/978-3-540-74871-7_9CrossRefGoogle Scholar
  37. 37.
    Haghani, A., Jung, S.: A dynamic vehicle routing problem with time-dependent travel times. Comput. Oper. Res. 32, 2959–2986 (2005)zbMATHCrossRefGoogle Scholar
  38. 38.
    Hvattum, L., Løkketangen, A.: Using scenario trees and progressive hedging for stochastic inventory routing problems. Journal of Heuristics 15, 527–557 (2009)zbMATHCrossRefGoogle Scholar
  39. 39.
    Hvattum, L.M., Løkketangen, A., Laporte, G.: Solving a dynamic and stochastic vehicle routing problem with a sample scenario hedging heuristic. Transportation Science 40(4), 421–438 (2006)CrossRefGoogle Scholar
  40. 40.
    Hvattum, L.M., Løkketangen, A., Laporte, G.: A branch-and-regret heuristic for stochastic and dynamic vehicle routing problems. Networks 49(4), 330–340 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Hvattum, L.M., Løkketangen, A., Laporte, G.: Scenario tree-based heuristics for stochastic inventory-routing problems. INFORMS Journal on Computing 21(2), 268–285 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Ichoua, S., Gendreau, M., Potvin, J.-Y.: Exploiting knowledge about future demands for real-time vehicle dispatching. Transportation Science 40(2), 211–225 (2006)CrossRefGoogle Scholar
  43. 43.
    Jaillet, P.: Probabilistic Traveling Salesman Problems. PhD thesis. Operations Research Center, MIT (February 1985)Google Scholar
  44. 44.
    Jih, W.-R., Yung-Jen Hsu, J.: Dynamic vehicle routing using hybrid genetic algorithms. In: Proceedings of 1999 IEEE International Conference on Robotics and Automation, vol. 1, pp. 453–458 (1999)Google Scholar
  45. 45.
    Johnson, D., McGeoch, L.: Experimental analysis of heuristics for the stsp. In: Gutin, G., Punnen, A., Du, D.-Z., Pardalos, P.M. (eds.) The Traveling Salesman Problem and Its Variations. Combinatorial Optimization, vol. 12, pp. 369–443. Springer, US (2004), doi:10.1007/0-306-48213-4_9Google Scholar
  46. 46.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (November 1995)Google Scholar
  47. 47.
    Kenyon, A.S., Morton, D.P.: Stochastic vehicle routing with random travel times. Transportation Science 37(1), 69–82 (2003)CrossRefGoogle Scholar
  48. 48.
    Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.-G.: Multi-Swarm Optimization for Dynamic Combinatorial Problems: A Case Study on Dynamic Vehicle Routing Problem. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 227–238. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  49. 49.
    Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59(3), 345–358 (1992)zbMATHCrossRefGoogle Scholar
  50. 50.
    Laporte, G.: Fifty years of vehicle routing. Transportation Science 43, 408–416 (2009)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Laporte, G., Musmanno, R., Vocaturo, F.: An adaptive large neighbourhood search heuristic for the capacitated arc-routing problem with stochastic demands. Transportation Science 44(1), 125–135 (2010)CrossRefGoogle Scholar
  52. 52.
    Larsen, A.: The Dynamic Vehicle Routing Problem. PhD thesis. Technical University of Denmark, Kongens, Lyngby, Denmark (2000)Google Scholar
  53. 53.
    Larsen, A., Madsen, O., Solomon, M.: Partially dynamic vehicle routing - models and algorithms. Journal of the Operational Research Society 53, 637–646 (2002)zbMATHCrossRefGoogle Scholar
  54. 54.
    Larsen, A., Madsen, O.B., Solomon, M.M.: Classification of dynamic vehicle routing systems. In: Sharda, R., Voss, S., Zeimpekis, V., Tarantilis, C.D., Giaglis, G.M., Minis, I. (eds.) Dynamic Fleet Management. Operations Research/Computer Science Interfaces Series, vol. 38, pp. 19–40. Springer, US (2007)Google Scholar
  55. 55.
    Larsen, A., Madsen, O.B., Solomon, M.M.: Recent developments in dynamic vehicle routing systems. In: Sharda, R., Voss, S., Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces Series, vol. 43, pp. 199–218. Springer, US (2008) doi:10.1007/978-0-387-77778-8_9Google Scholar
  56. 56.
    Liao, T.-Y.: Tabu search algorithm for dynamic vehicle routing problems under real-time information. Transportation Research Record: Journal of the Transportation Research Board 1882(1), 140–149 (2004)CrossRefGoogle Scholar
  57. 57.
    Liao, T.-Y., Hu, T.-Y.: An object-oriented evaluation framework for dynamic vehicle routing problems under real-time information. Expert Systems with Applications 38(10), 12548–12558 (2011)CrossRefGoogle Scholar
  58. 58.
    Marinakis, Y., Marinaki, M.: A hybrid multi-swarm particle swarm optimization algorithm for the probabilistic traveling salesman problem. Comput. Oper. Res. 37, 432–442 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Marinakis, Y., Migdalas, A., Pardalos, P.: Expanding neighborhood grasp for the traveling salesman problem. Computational Optimization and Applications 32, 231–257 (2005), doi:10.1007/s10589-005-4798-5MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Mendoza, J.E., Castanier, B., Guéret, C., Medaglia, A.L., Velasco, N.: A memetic algorithm for the multi-compartment vehicle routing problem with stochastic demands. Computers & Operations Research 37(11), 1886–1898 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Operations Research 24(11), 1097–1100 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Montemanni, R., Gambardella, L., Rizzoli, A., Donati, A.: Ant colony system for a dynamic vehicle routing problem. Journal of Combinatorial Optimization 10, 327–343 (2005), doi:10.1007/s10878-005-4922-6MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Parragh, S.N.: Ambulance Routing Problems with Rich Constraints and Multiple Objectives. PhD thesis. University of Vienna, Department of Business Administration (2009)Google Scholar
  64. 64.
    Parragh, S.N., Doerner, K.F., Hartl, R.F.: Variable neighborhood search for the dial-a-ride problem. Comput. Oper. Res. 37, 1129–1138 (2010)zbMATHCrossRefGoogle Scholar
  65. 65.
    Pessoa, A., de Arago, M.P., Uchoa, E.: Robust branch-cut-and-price algorithms for vehicle routing problems. In: Golden, et al. (eds.) [35], pp. 297–325 (2008)Google Scholar
  66. 66.
    Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.: A review of dynamic vehicle routing problems. Technical Report CIRRELT-2011-62. Centre interuniversitaire de recherche sur les reseaux denterprise, la logistique et le transport (CIRRELT), Montreal, Canada (2011)Google Scholar
  67. 67.
    Potvin, J.-Y., Xu, Y., Benyahia, I.: Vehicle routing and scheduling with dynamic travel times. Computers and Operations Research 33(4), 1129–1137 (2006), Part Special Issue: Optimization Days 2003Google Scholar
  68. 68.
    Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley (2007)Google Scholar
  69. 69.
    Powell, W.B., Topaloglu, H.: Stochastic programming in transportation and logistics. In: Ruszczynski, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 555–635. Elsevier (2003)Google Scholar
  70. 70.
    Regan, A.C., Mahmassani, H.S., Jaillet, P.: Evaluation of dynamic fleet management systems: Simulation framework. Transportation Research Record: Journal of the Transportation Research Board 1645(1), 176–184 (1998)CrossRefGoogle Scholar
  71. 71.
    Rei, W., Gendreau, M., Soriano, P.: A hybrid monte carlo local branching algorithm for the single vehicle routing problem with stochastic demands. Transportation Science 44(1), 136–146 (2010)CrossRefGoogle Scholar
  72. 72.
    Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57, pp. 219–249. Springer, New York (2003), doi:10.1007/0-306-48056-5_8Google Scholar
  73. 73.
    Rockafellar, R.T., Wets, R.J.-B.: Scenarios and policy aggregation in optimization under uncertainty. Mathematics of Operations Research 16(1), 119–147 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Schilde, M., Doerner, K., Hartl, R.: Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports. Computers & Operations Research 38(12), 1719–1730 (2011)zbMATHCrossRefGoogle Scholar
  75. 75.
    Schorpp, S.: Dynamic Fleet Management for International Truck Transportation focusing on Occasional Transportation Tasks. PhD thesis. University of Augsburg, Faculty of Economics and Business Administration (2010)Google Scholar
  76. 76.
    Simão, H.P., Day, J., George, A.P., Gifford, T., Nienow, J., Powell, W.B.: An approximate dynamic programming algorithm for large-scale fleet management: A case application. Transportation Science 43(2), 178–197 (2009)CrossRefGoogle Scholar
  77. 77.
    Stützle, T., Hoos, H.H.: Analyzing the run-time behaviour of iterated local search for the tsp. In: III Metaheuristics International Conference. Kluwer Academic Publishers (1999)Google Scholar
  78. 78.
    Thomas, B.W., White, I.: Chelsea C. Anticipatory route selection. Transportation Science 38(4), 473–487 (2004)CrossRefGoogle Scholar
  79. 79.
    Toth, P., Vigo, D. (eds.): The vehicle routing problem. Society for Industrial and Applied Mathematics (2001)Google Scholar
  80. 80.
    Voss, S., Osman, I.H., Roucairol, C. (eds.): Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers, Norwell (1999)zbMATHGoogle Scholar
  81. 81.
    Yang, W.-H., Mathur, K., Ballou, R.H.: Stochastic vehicle routing problem with restocking. Transportation Science 34, 99–112 (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Mobility DepartmentAustrian Institute of TechnologyKlosterneuburgAustria

Personalised recommendations