Abstract
This chapter illustrates the benefits of using data mining methods to gain greater understanding of the strengths and weaknesses of a metaheuristic across the whole of instance space. Using graph coloring as a case study, we demonstrate how the relationships between the features of instances and the performance of algorithms can be learned and visualized. The instance space (in this case, the set of all graph coloring instances) is characterized as a high-dimensional feature space, with each instance summarized by a set of metrics selected as indicative of instance hardness. We show how different instance generators produce instances with various properties, and how the performance of algorithms depends on these properties. Based on a set of tested instances, we reveal the generalized boundary in instance space where an algorithm can be expected to perform well. This boundary is called the algorithm footprint in instance space. We show how data mining methods can be used to visualize the footprint and relate its boundary to properties of the instances. In this manner, we can begin to develop a good understanding of the strengths and weaknesses of a set of algorithms, and identify opportunities to develop new hybrid approaches that exploit the combined strength and improve the performance across a broad instance space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)
Culberson, J.: On the futility of blind search: An algorithmic view of ’no free lunch’. Evolutionary Computation 6(2), 109–127 (1998)
Blum, C., Roli, A.: Hybrid metaheuristics: An introduction. In: Hybrid Metaheuristics, pp. 1–30 (2008)
Talbi, E.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–564 (2002)
Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: An emerging direction in modern search technology. International Series in Operations Research and Management Science, pp. 457–474 (2003)
Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)
Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A portfolio approach to algorithm selection. In: International Joint Conference on Artificial Intelligence, vol. 18, pp. 1542–1543 (2003)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 712–727. Springer, Heidelberg (2007)
Hooker, J.: Testing heuristics: We have it all wrong. Journal of Heuristics 1(1), 33–42 (1995)
Corne, D.W., Reynolds, A.P.: Optimisation and Generalisation: Footprints in Instance Space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI, Part I. LNCS, vol. 6238, pp. 22–31. Springer, Heidelberg (2010)
Smith-Miles, K.A., Lopes, L.B.: Measuring instance difficulty for combinatorial optimization problems. Computers and Operations Research 39(5), 875–889 (2012)
Macready, W., Wolpert, D.: What makes an optimization problem hard. Complexity 5, 40–46 (1996)
van Hemert, J., Urquhart, N.: Phase Transition Properties of Clustered Travelling Salesman Problem Instances Generated with Evolutionary Computation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 151–160. Springer, Heidelberg (2004)
Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP Difficulty by Learning from Evolved Instances. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 266–280. Springer, Heidelberg (2010)
Smith-Miles, K., van Hemert, J.: Discovering the suitability of optimisation algorithms by learning from evolved instances. Annals of Mathematics and Artificial Intelligence (in press)
Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Transactions on Evolutionary Computation 4(4), 337–352 (2000)
Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evolutionary Computation 12(3), 303–325 (2004)
Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard optimization problems. Nature 435(7043), 759–764 (2005)
Cheeseman, P., Kanefsky, B., Taylor, W.: Where the really hard problems are. In: Proceedings of the 12th IJCAI, pp. 331–337 (1991)
Smith-Miles, K., James, R., Giffin, J., Tu, Y.: Understanding the Relationship between Scheduling Problem Structure and Heuristic Performance using Knowledge Discovery. LNCS (2009) (in press)
Smith-Miles, K.: Towards insightful algorithm selection for optimisation using meta-learning concepts. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008 (IEEE World Congress on Computational Intelligence), pp. 4118–4124 (2008)
Smith-Miles, K., Lopes, L.: Generalising Algorithm Performance in Instance Space: A Timetabling Case Study. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 524–538. Springer, Heidelberg (2011)
Hill, R., Reilly, C.: The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance. Management Science, 302–317 (2000)
Pardalos, P., Mavridou, T., Xue, J.: The graph coloring problem: A bibliographic survey, vol. 2. Kluwer Academic Publishers (1998)
Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Computers & Operations Research 33(9), 2547–2562 (2006)
Brélaz, D.: New methods to color the vertices of a graph. Communications of the ACM 22(4), 251–256 (1979)
Hertz, A., Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)
Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; part ii, graph coloring and number partitioning. Operations Research, 378–406 (1991)
Chiarandini, M., Stützle, T., et al.: An application of iterated local search to graph coloring problem. In: Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 7–8. Citeseer (2002)
Hamiez, J.-P., Hao, J.-K.: Scatter Search for Graph Coloring. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 168–213. Springer, Heidelberg (2002)
Galinier, P., Hao, J.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)
Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Annals of Operations Research 63(3), 437–461 (1996)
Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers & Operations Research 35(3), 960–975 (2008)
Hooker, J.: Needed: An empirical science of algorithms. Operations Research, 201–212 (1994)
Culberson, J.: Graph coloring page (2006), http://www.cs.ualberta.ca/~joe/Coloring
Culberson, J., Beacham, A., Papp, D.: Hiding our colors. In: CP 1995 Workshop on Studying and Solving Really Hard Problems. Citeseer (1995)
Mohar, B.: The laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications 2, 871–898 (1991)
Biggs, N.: Algebraic graph theory, vol. 67. Cambridge Univ. Pr. (1993)
Rice, J.: The Algorithm Selection Problem. Advances in Computers 15, 65–117 (1976)
Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing Surveys 41(1) (2008)
Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43(1), 59–69 (1982)
Somine, V.: Eudaptics software Gmbh
Knowles, J., Corne, D.: Towards landscape analyses to inform the design of a hybrid local search for the multiobjective quadratic assignment problem. Soft Computing Systems: Design, Management and Applications, 271–279 (2002)
Bierwirth, C., Mattfeld, D.C., Watson, J.-P.: Landscape Regularity and Random Walks for the Job-Shop Scheduling Problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 21–30. Springer, Heidelberg (2004)
Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)
Lopes, L., Smith-Miles, K.: Generating applicable synthetic instances for branch problems, under review (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Smith-Miles, K., Wreford, B., Lopes, L., Insani, N. (2013). Predicting Metaheuristic Performance on Graph Coloring Problems Using Data Mining. In: Talbi, EG. (eds) Hybrid Metaheuristics. Studies in Computational Intelligence, vol 434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30671-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-30671-6_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-30670-9
Online ISBN: 978-3-642-30671-6
eBook Packages: EngineeringEngineering (R0)