Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)
CrossRef
Google Scholar
Culberson, J.: On the futility of blind search: An algorithmic view of ’no free lunch’. Evolutionary Computation 6(2), 109–127 (1998)
CrossRef
Google Scholar
Blum, C., Roli, A.: Hybrid metaheuristics: An introduction. In: Hybrid Metaheuristics, pp. 1–30 (2008)
Google Scholar
Talbi, E.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–564 (2002)
CrossRef
Google Scholar
Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: An emerging direction in modern search technology. International Series in Operations Research and Management Science, pp. 457–474 (2003)
Google Scholar
Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)
CrossRef
Google Scholar
Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A portfolio approach to algorithm selection. In: International Joint Conference on Artificial Intelligence, vol. 18, pp. 1542–1543 (2003)
Google Scholar
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: The Design and Analysis of an Algorithm Portfolio for SAT. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 712–727. Springer, Heidelberg (2007)
CrossRef
Google Scholar
Hooker, J.: Testing heuristics: We have it all wrong. Journal of Heuristics 1(1), 33–42 (1995)
MathSciNet
MATH
CrossRef
Google Scholar
Corne, D.W., Reynolds, A.P.: Optimisation and Generalisation: Footprints in Instance Space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI, Part I. LNCS, vol. 6238, pp. 22–31. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Smith-Miles, K.A., Lopes, L.B.: Measuring instance difficulty for combinatorial optimization problems. Computers and Operations Research 39(5), 875–889 (2012)
MathSciNet
CrossRef
Google Scholar
Macready, W., Wolpert, D.: What makes an optimization problem hard. Complexity 5, 40–46 (1996)
MathSciNet
Google Scholar
van Hemert, J., Urquhart, N.: Phase Transition Properties of Clustered Travelling Salesman Problem Instances Generated with Evolutionary Computation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 151–160. Springer, Heidelberg (2004)
CrossRef
Google Scholar
Smith-Miles, K., van Hemert, J., Lim, X.Y.: Understanding TSP Difficulty by Learning from Evolved Instances. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073, pp. 266–280. Springer, Heidelberg (2010)
CrossRef
Google Scholar
Smith-Miles, K., van Hemert, J.: Discovering the suitability of optimisation algorithms by learning from evolved instances. Annals of Mathematics and Artificial Intelligence (in press)
Google Scholar
Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Transactions on Evolutionary Computation 4(4), 337–352 (2000)
CrossRef
Google Scholar
Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evolutionary Computation 12(3), 303–325 (2004)
MathSciNet
CrossRef
Google Scholar
Achlioptas, D., Naor, A., Peres, Y.: Rigorous location of phase transitions in hard optimization problems. Nature 435(7043), 759–764 (2005)
CrossRef
Google Scholar
Cheeseman, P., Kanefsky, B., Taylor, W.: Where the really hard problems are. In: Proceedings of the 12th IJCAI, pp. 331–337 (1991)
Google Scholar
Smith-Miles, K., James, R., Giffin, J., Tu, Y.: Understanding the Relationship between Scheduling Problem Structure and Heuristic Performance using Knowledge Discovery. LNCS (2009) (in press)
Google Scholar
Smith-Miles, K.: Towards insightful algorithm selection for optimisation using meta-learning concepts. In: IEEE International Joint Conference on Neural Networks, IJCNN 2008 (IEEE World Congress on Computational Intelligence), pp. 4118–4124 (2008)
Google Scholar
Smith-Miles, K., Lopes, L.: Generalising Algorithm Performance in Instance Space: A Timetabling Case Study. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 524–538. Springer, Heidelberg (2011)
CrossRef
Google Scholar
Hill, R., Reilly, C.: The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance. Management Science, 302–317 (2000)
Google Scholar
Pardalos, P., Mavridou, T., Xue, J.: The graph coloring problem: A bibliographic survey, vol. 2. Kluwer Academic Publishers (1998)
Google Scholar
Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Computers & Operations Research 33(9), 2547–2562 (2006)
MathSciNet
MATH
CrossRef
Google Scholar
Brélaz, D.: New methods to color the vertices of a graph. Communications of the ACM 22(4), 251–256 (1979)
MATH
CrossRef
Google Scholar
Hertz, A., Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)
MathSciNet
MATH
CrossRef
Google Scholar
Johnson, D., Aragon, C., McGeoch, L., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; part ii, graph coloring and number partitioning. Operations Research, 378–406 (1991)
Google Scholar
Chiarandini, M., Stützle, T., et al.: An application of iterated local search to graph coloring problem. In: Proceedings of the Computational Symposium on Graph Coloring and its Generalizations, pp. 7–8. Citeseer (2002)
Google Scholar
Hamiez, J.-P., Hao, J.-K.: Scatter Search for Graph Coloring. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 168–213. Springer, Heidelberg (2002)
CrossRef
Google Scholar
Galinier, P., Hao, J.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)
MathSciNet
MATH
CrossRef
Google Scholar
Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Annals of Operations Research 63(3), 437–461 (1996)
MATH
CrossRef
Google Scholar
Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Computers & Operations Research 35(3), 960–975 (2008)
MathSciNet
MATH
CrossRef
Google Scholar
Hooker, J.: Needed: An empirical science of algorithms. Operations Research, 201–212 (1994)
Google Scholar
Culberson, J.: Graph coloring page (2006),
http://www.cs.ualberta.ca/~joe/Coloring
Culberson, J., Beacham, A., Papp, D.: Hiding our colors. In: CP 1995 Workshop on Studying and Solving Really Hard Problems. Citeseer (1995)
Google Scholar
Mohar, B.: The laplacian spectrum of graphs. Graph Theory, Combinatorics, and Applications 2, 871–898 (1991)
MathSciNet
Google Scholar
Biggs, N.: Algebraic graph theory, vol. 67. Cambridge Univ. Pr. (1993)
Google Scholar
Rice, J.: The Algorithm Selection Problem. Advances in Computers 15, 65–117 (1976)
CrossRef
Google Scholar
Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing Surveys 41(1) (2008)
Google Scholar
Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43(1), 59–69 (1982)
MathSciNet
MATH
CrossRef
Google Scholar
Somine, V.: Eudaptics software Gmbh
Google Scholar
Knowles, J., Corne, D.: Towards landscape analyses to inform the design of a hybrid local search for the multiobjective quadratic assignment problem. Soft Computing Systems: Design, Management and Applications, 271–279 (2002)
Google Scholar
Bierwirth, C., Mattfeld, D.C., Watson, J.-P.: Landscape Regularity and Random Walks for the Job-Shop Scheduling Problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 21–30. Springer, Heidelberg (2004)
CrossRef
Google Scholar
Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 34(10), 3143–3153 (2007)
MATH
CrossRef
Google Scholar
Lopes, L., Smith-Miles, K.: Generating applicable synthetic instances for branch problems, under review (2011)
Google Scholar