Advertisement

Combining Column Generation and Metaheuristics

  • Filipe Alvelos
  • Amaro de Sousa
  • Dorabella Santos
Part of the Studies in Computational Intelligence book series (SCI, volume 434)

Abstract

In this Chapter, we consider the hybridization of column generation (CG) with metaheuristics (MHs) for solving integer programming and combinatorial optimization problems. We describe a general framework entitled ”metaheuristic search by column generation” (for short, SearchCol). CG is a decomposition approach in which one linear programming master problem interacts with subproblems to obtain an optimal solution to a relaxed version of a problem. The subproblems may be solved by problem-specific algorithms. After CG is applied, a set of subproblem’s solutions, optimal primal and dual values of the master problem variables and a lower bound to the optimal value of the problem are available. In contrast with enumerative approaches (e.g, branch-and-price), in SearchCol the information provided by CG is used in a MH search. The search is based on representing a solution (to the overall problem) as being composed by one solution from each subproblem. After a search is conducted, a perturbation for CG is defined and a new iteration begins. The perturbation consists in forcing or forbidding attributes of the subproblem’s solutions and, in general, leads to the generation of new subproblem’s solutions and different optimal primal and dual values of the master problem variables. In this Chapter, we discuss (i) which models are suitable for decomposition approaches as SearchCol, (ii) different alternatives for generating initial solutions for the search (with different degrees of randomization, greediness and influence of CG) (iii) different search approaches based on local search, (iv) different alternatives for perturbing CG (influenced by CG, based on the incumbent, and based on the memory of the search).

Keywords

Span Tree Column Generation Master Problem Variable Neighborhood Search Global Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: theory, algorithms, and applications. Prentice Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  2. 2.
    Alvelos, F., de Sousa, A., Santos, D.: SearchCol: Metaheuristic Search by Column Generation. In: Blesa, M.J., Blum, C., Raidl, G., Roli, A., Sampels, M. (eds.) HM 2010. LNCS, vol. 6373, pp. 190–205. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Alvelos, F., Valério de Carvalho, J.M.: Comparing branch-and-price algorithms for the unsplittable multicommodity flow problem. In: Ben-Ameur, W., Petrowski, A. (eds.) Proceedings of the International Network Optimization Conference, INOC 2003, Evry/Paris, pp. 7–12 (October 2003)Google Scholar
  4. 4.
    Alvelos, F., Valério de Carvalho, J.M.: A Local Search Heuristic based on Column Generation Applied to the Binary Multicommodity Flow Problem. In: Proceedings of International Network Optimization Conference, INOC 2007, Spa, Belgium, p. 6 (April 2007)Google Scholar
  5. 5.
    Akker, J.M., van den Hoogeveen, J.A., van de Velde, S.L.: Parallel machine scheduling by column generation. Operations Research 47, 862–872 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Akker, J.M., van den Hoogeveen, H., van de Velde, S.L.: Appplying column generation to machine scheduling. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, ch. 11, Springer (2005)Google Scholar
  7. 7.
    Ball, M.O.: Heuristics based on mathematical programming. Surveys in Operations Research and Management Science 16, 21–38 (2006)CrossRefGoogle Scholar
  8. 8.
    Barnhart, C., Hane, C.A., Vance, P.H.: Using branch-and-price-and-cut to solve origin-destination integer multicommodity flow problems. Operations Research 48, 318–326 (2000)CrossRefGoogle Scholar
  9. 9.
    Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.: Branch-and-price: column generation for solving huge integer programs. Operations Research 46, 316–329 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Beasley, J.E.: Lagrangian relaxation. In: Reeves, C.R. (ed.) Modern Heuristic Techniques for Combinatorial Problems. John Wiley and Sons (1993)Google Scholar
  11. 11.
    Blum, C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds.): Hybrid metaheuristics: An emerging approach to optimization. Springer (2008)Google Scholar
  12. 12.
    Blum, C., Cotta, C., Fernandez, A.J., Gallardo, J.E., Mastrolilli, M.: Hybridizations of metaheuristics with branch-and-bound derivatives. In: Blum, C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics: An Emerging Approach to Optimization. Springer (2008)Google Scholar
  13. 13.
    Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing 11, 4135–4151 (2011)CrossRefGoogle Scholar
  14. 14.
    Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys 35, 268–308 (2011)CrossRefGoogle Scholar
  15. 15.
    Boschetti, M., Maniezzo, V., Roffilli, M.: Decomposition Techniques as Metaheuristic Frameworks. In: Maniezzo, V., Stützle, T., Voß, S. (eds.) Matheuristics - Hybridizing Metaheuristics and Mathematical Programming, Annals of Information Systems, vol. 10, ch. 5. Springer (2009)Google Scholar
  16. 16.
    Chen, Z.-L., Powell, W.B.: Solving Parallel Machine Scheduling Problems by Column Generation. INFORMS Journal on Computing 11, 78–94 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Dillenberger, C., Escudero, L.F., Wollensak, A., Zhang, W.: On Practical Resource Allocation for Production Planning and Scheduling with Period Overlapping Setups. European Journal of Operational Research 75, 275–286 (1994)zbMATHCrossRefGoogle Scholar
  18. 18.
    Danna, E., Pape, C.L.: Branch-and-Price Heuristics: A Case Study on the Vehicle Routing Problem with Time Windows. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, ch. 4. Springer (2005)Google Scholar
  19. 19.
    Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Operations Research 8, 101–111 (1960)zbMATHCrossRefGoogle Scholar
  20. 20.
    Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.): Column Generation. Springer, New York (2005)zbMATHGoogle Scholar
  21. 21.
    Desrosiers, J., Soumis, F., Desrochers, M.: Routing with time windows by column generation. Networks 14, 545–565 (1984)zbMATHCrossRefGoogle Scholar
  22. 22.
    Desrosiers, J., Dumas, Y., Solomon, M.M., Soumis, F.: Time Constrained Routing and Scheduling. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Routing, Handbooks in OR & MS, vol. 8, ch. 2. Elsevier Science B.V. (1995)Google Scholar
  23. 23.
    Fahle, T., Junker, U., Karisch, S.E., Kohl, N., Sellmann, M., Vaaben, B.: Constraint Programming Based Column Generation for Crew Assignment. Journal of Heuristics 18, 59–81 (2002)CrossRefGoogle Scholar
  24. 24.
    Fisher, M.L.: The Lagrangian relaxation method for solving integer programming problems. Management Science 27, 1–18 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Fisher, M.L.: The Lagrangian relaxation method for solving integer programming problems. Management Science 50, 1872–1874 (2004)CrossRefGoogle Scholar
  26. 26.
    Fisher, M.L., Kedia, P.: Optimal solutions of set covering/partitioning problems using dual heuristics. Management Science 36, 674–688 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Ford, L.R., Fulkerson, D.R.: A suggested computation for maximal multicommodity network flows. Management Science 5, 97–101 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Frangioni, A.: About Lagrangian Methods in Integer Optimization. Annals of Operations Research 139, 163–193 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Gendreau, M., Potvin, J.-Y. (eds.): Handbook of metaheuristics. Springer (2010)Google Scholar
  30. 30.
    Geoffrion, A.M.: Lagrangean relaxation for integer programming. Mathematical Programming Study 2, 82–114 (1974)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem. Operations Research 9, 849–859 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting stock problem - Part II. Operations Research 11, 863–888 (1963)zbMATHCrossRefGoogle Scholar
  33. 33.
    Glover, F., Kochenberger, G. (eds.): Handbook of metaheuristics. Kluwer (2003)Google Scholar
  34. 34.
    Glover, F., Laguna, M.: Tabu Search. Kluwer (1997)Google Scholar
  35. 35.
    Gualandi, S., Malucelli, F.: Constraint programming-based column generation. A Quarterly Journal of Operations 7, 113–137 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Hansen, P., Mladenovic, N., Brimberg, J., Perez, J.A.M.: Variable neighborhood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. Springer (2010)Google Scholar
  37. 37.
    Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Operations Research 18, 1138–1167 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees: Part II. Mathematical Programming 1, 6–25 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Hopp, W.J. (Editor-in-Chief): Ten Most Influential Titles of ”Management Science’s” First Fifty Years. Management Science 50 (2004)Google Scholar
  40. 40.
    IEEE Standard 802.1s: Virtual Bridged Local Area Networks - Amendment 3: Multiple Spanning Trees (2002)Google Scholar
  41. 41.
    Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.): 50 Years of Integer Programming 1958-2008, From the Early Years to the State-of-the-Art. Springer (2010)Google Scholar
  42. 42.
    Klabjan, D.: Large-scale models in the airline industry. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, ch. 3, Springer (2005)Google Scholar
  43. 43.
    Kallehauge, B., Larsen, J., Madsen, O.B.G.: Vehicle Routing with Time Windows. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, ch. 3. Springer (2005)Google Scholar
  44. 44.
    Kelley, J.E.: The cutting-plane method for solving convex programs. Journal of the SIAM 8, 703–712 (1960)MathSciNetGoogle Scholar
  45. 45.
    Lopes, M.J.P., Valério de Carvalho, J.M.: A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times. European Journal of Operational Research 176, 1508–1527 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Lübbecke, M.E., Desrosiers, J.: Selected topics in column generation. Operations Research 53, 1007–1023 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Maniezzo, V., Stutzle, T., Voss, S. (eds.): Matheuristics, hybridizing metaheuristics and mathematical programming. Springer (2009)Google Scholar
  48. 48.
    Marti, R., Moreno-Vega, J.M., Duarte, A.: Advanced multi-start methods. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. Springer (2010)Google Scholar
  49. 49.
    Martin, R.K.: Large Scale Linear and Integer Optimization, A Unified Approach. Kluwer Academic Publishers (1999)Google Scholar
  50. 50.
    Monaci, M., Paolo, T.: A Set-Covering-Based Heuristic Approach for Bin-Packing Problems. INFORMS Journal on Computing 18, 71–85 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal of Production Research 26, 35–62 (1988)CrossRefGoogle Scholar
  52. 52.
    Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS Journal on Computing 19, 1007–1023 (2007)MathSciNetGoogle Scholar
  53. 53.
    Puchinger, J., Raidl, G.R., Pirkwieser, S.: MetaBoosting: enhancing integer programming techniques by metaheuristics. In: Maniezzo, V., Stutzle, T., Voss, S. (eds.) Matheuristics, Hybridizing Metaheuristics and Mathematical Programming. Springer (2009)Google Scholar
  54. 54.
    Raidl, G.R.: A Unified View on Hybrid Metaheuristics. In: Almeida, F., Aguilera, M.J., Blum, C., Moreno Vega, J.M., Perez, M., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics. Springer (2006)Google Scholar
  55. 55.
    Raidl, G.R., Puchinger, J., Blum, C.: Metaheuristic Hybrids. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. Springer (2010)Google Scholar
  56. 56.
    Raidl, G.R., Puchinger, J.: Combining (integer) linear programming techniques and metaheuristics for combinatorial optimization. In: Blum, C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics: An Emerging Approach to Optimization. Springer (2008)Google Scholar
  57. 57.
    Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures: advances, hybridizations, and applications. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, 2nd edn., ch. 10. Springer (2010)Google Scholar
  58. 58.
    Santos, D., de Sousa, A., Alvelos, F.: Traffic Engineering of Telecommunication Networks Based on Multiple Spanning Tree Routing. In: Valadas, R., Salvador, P. (eds.) FITraMEn 2008. LNCS, vol. 5464, pp. 114–129. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  59. 59.
    Santos, D., Sousa, A.F., Alvelos, F., Dzida, M., Pióro, M.: Optimization of link load balancing in multiple spanning tree routing networks. Telecommunication Systems 48, 109–124 (2011)CrossRefGoogle Scholar
  60. 60.
    Savelsbergh, M.: A branch-and-price algorithm for the generalized assignment problem. Operations Research 45, 831–841 (2007)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Taillard, E., Gambardella, L., Gendreau, M., Potvin, J.-Y.: Adaptive memory programming: A unified view of metaheuristics. European Journal of Operational Research 135, 1–16 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Talbi, E.-G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8, 541–564 (2002)CrossRefGoogle Scholar
  63. 63.
    Talbi, E.-G.: Metaheuristics. John Wiley and Sons (2009)Google Scholar
  64. 64.
    Vanderbeck, F.: Implementing Mixed Integer Column Generation. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, ch. 12, Springer (2005)Google Scholar
  65. 65.
    Wilhelm, W.E.: A technical review of column generation in integer programming. Optimization and Engineering 2, 159–200 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Wolsey, L.A.: Integer Programming. John Wiley and Sons (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Filipe Alvelos
    • 1
  • Amaro de Sousa
    • 2
  • Dorabella Santos
    • 3
  1. 1.Centro Algoritmi / DPSUniversidade do MinhoBragaPortugal
  2. 2.Instituto de Telecomunicações / DETIUniversidade de AveiroAveiroPortugal
  3. 3.Instituto de TelecomunicaçõesAveiroPortugal

Personalised recommendations