Application of Magnetic Microwires in Titanium Implants – Conception of Intelligent Sensoric Implant

  • Radovan Hudák
  • Rastislav Varga
  • Jozef Živčák
  • Jozef Hudák
  • Josef Blažek
  • Dušan Praslička
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 2)


The idea of intelligent sensoric implant which enables to scan parameters from the human body wireless comes from analysis of studies descrbing reasons of implants rejection or loosening. Inflamations and incorrect biomechanical load are offen the reasons for surgery, where implant has to be removed or replaced. Presented study shows a concept of intelligent dental implant, where magnetic microwires are placed and fixed into titanium dental implant to get parameters from implant, tissue, or implant-tissue interaction. A part of the study shows preparation of magnetic microwires, measurement of physical quantities using bistabile magnetic microwires and realisation of the functional model of the sensor and experiments. Obtained results show, that utilization of magnetic microwires in implants for scanning of selected physiological or physical parameters is promising. The further researches in the field of fabrication technology, magnetic wires preparation and scanning processes to confirm an intelligent sensoric implant concept is necessary.


intelligent implants metrotomography direct metal laser sintering magnetic microwires 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ainslie, K.M., Desai, T.A.: Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab. Chip. 8, 1864–1878 (2008)CrossRefGoogle Scholar
  2. 2.
    Bidanda, B., Bártolo, P.: Virtual Prototyping & Bio Manufacturing in Medical Applications. Springer Science+Business Media, ISBN: 978-0-0387-33429-5Google Scholar
  3. 3.
    Bistable amorphous and nanocrystalline FeCoMoB microwires. Acta Physica Polonica A 118, 809 (2010)Google Scholar
  4. 4.
    Botsis, J., Humbert, L., Colpo, F., Giaccari, P.: Embedded fiber Bragg grating sensor for internal strain measurements in polymeric materials. Opt. Lasers Eng. 43(3-5), 491–510 (2005)CrossRefGoogle Scholar
  5. 5.
    Cerny, M., Martinak, L., Penhaker, M., Rosulek, M.: Design and implementation of textile sensors for biotelemetry applications. In: Proceedings 14th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, NBC 2008, IFMBE Proceedings, IFMBE, vol. 20, Riga, June 16-June 20, pp. 194–197 (2008) ISSN: 16800737, ISBN: 9783540693666, doi:10.1007/978-3-540-69367-3-53Google Scholar
  6. 6.
    Cerny, M., Penhaker, M.: Wireless body sensor network in Health Maintenance systems. Elektronika ir Elektrotechnika (9), 113–116 (2011) ISSN: 13921215Google Scholar
  7. 7.
    Chiriac, H., Ovari, T.A.: Amorphous glass-covered magnetic wires: Preparation, properties, applications. Prog. Mater. Sci. 40, 333 (1996)CrossRefGoogle Scholar
  8. 8.
    Cverha, A., Lipovsky, P., Hudak, J., Blazek, J., Praslicka, D.: Concept of magnetometer with microwire probe. Acta Avionica (25), 22–25 (2011)Google Scholar
  9. 9.
    Hudak, J., Blazek, J., Cverha, A., Gonda, P., Varga, R.: Improved Sixtus- Tonks method for sensing the domain wall propagation direction. Sensor and Actuator A, 292–295 (2009)Google Scholar
  10. 10.
    Klein, P., Varga, R., Vazquez, M.: Temperature dependence of magnetization process inGoogle Scholar
  11. 11.
    Klein, P., Varga, R., Vojtanik, P., Kovac, J., Ziman, J., Badini-Confalonieri, G.A., Vazquez, J.: Study of the switching field in amorphous and nanocrystalline FeCoMoB microwire. Phys. D: Appl. Phys. 43, 045002 (2010)CrossRefGoogle Scholar
  12. 12.
    Komová, E., Varga, M., Varga, R., Vojtanik, P., Torrejon, J., Provencio, M., Vazquez, M.: Acta Physica Polonica A 113, 135 (2008)Google Scholar
  13. 13.
    Komová, E., Varga, M., Varga, R., Vojtaník, P., Torrejon, J., Provencio, M., Vazquez, M.: Frequency dependence of the single domain wall switching field in glass-coated microwires. J. Physics: Condensed Matter 19, 236229 (2007)CrossRefGoogle Scholar
  14. 14.
    Kronmüller, H., Fahnle, M.: Micromagnetism and the Microstructure of the Ferromagnetic Solids. Cambridge Univ. Press (2003)Google Scholar
  15. 15.
    Kubon, M., Moschallski, M., Link, G., Ensslen, T., et al.: A Microsensor System to Probe Physiologicla Environments and Tissue Response, Sensors. In: 2010 IEEE, IEEE Sensors 2010 Conference, pp. 2607–2611 (2010)Google Scholar
  16. 16.
    Lestari, W., Qiao, P., Hanagud, S.: Curvature mode shape-based damage assessment of carbon/epoxy composite beams. J. Intell. Mater. Syst. Struct. 18(3), 189–208 (2007)CrossRefGoogle Scholar
  17. 17.
    Libermann, H., Graham, C.: Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions. IEEE Trans. Magn. MAG-12(6), 921–923 (1976)CrossRefGoogle Scholar
  18. 18.
    Mouzakis, D., Dimogianopoulos, E., Giannikas, D.: Contact-Free Magnetoelastic Smart Microsensors With Stochastic Noise Filtering for Diagnosing Orthopedic Implant Failures. IEEE Transactions on Industrial Electronics 56(4) (April 2009)Google Scholar
  19. 19.
    Narayan, R.: Biomedical Materials. Springer Science+Business Media, LLC (2009) ISBN: 978-0-387-84871-6Google Scholar
  20. 20.
    Olivera, J., Sanchez, J.L., Prida, V.M., Varga, R., Zhukova, V., Zhukov, A., Hernando, B.: Temperature Dependence of the Magnetization Reversal Process and Domain structure in Fe77.5-xNixSi7.5B15. Magnetic Microwires IEEE Trans. Magn. 44, 3946 (2008)CrossRefGoogle Scholar
  21. 21.
    Oshida, Y.: Bioscience and Bioengineering of Titanium Materials, 1st edn. Elsevier (2001) ISBN-13:978-0-08-045142-8Google Scholar
  22. 22.
    Sabol, R., Varga, R., Blazek, J., Hudak, J., Praslicka, D., et al.: Temperature and frequency dependences of the switching field in glass-coated FeNbSiB microwires. In: SMM 2011, pp. S03–P237 (2011)Google Scholar
  23. 23.
    Sabol, R., Varga, R., Blazek, J., Hudak, J., Praslicka, D., et al.: Stress dependence of switching field in glass-coated microwires. In: ANMM 2011 – Amorphous and Nanostructured Magnetics Materials, p. 5 (2011)Google Scholar
  24. 24.
    Skapa, J., Látal, J., Penhaker, M., Koudelka, P., Hancek, F., Vasinek, V.: Optical fiber distributed temperature sensor in cardiological surgeries. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 7726, art. no. 77261V, Sponsor: The Society of Photo-Optical Instrumentation Engineers (SPIE); B-PHOT-Brussels Photonics Team; Brussels-Capital Region; Fonds Wetenschappelijk Onderzoek (FWO); International Commission for Optics (ICO); Ville de Bruxelles, April 12-April 15, Brussels (2010) ISSN: 0277786X, ISBN: 9780819481993, doi: 10.1117/12.854309 Google Scholar
  25. 25.
    Varga, R., Garcia, K.L., Vazquez, M., Zhukov, A., Vojtanik, P.: Switching-field distribution in amorphous magnetic bistable microwires. Physical Review B 70, 024402 (2004)CrossRefGoogle Scholar
  26. 26.
    Varga, R., Garcia, K.L., Zhukov, A., Vazquez, M., Vojtanik, P.: Temperature dependence of the switching field and its distribution function in Fe-based bistable microwires. Appl. Phys. Lett. 83, 2620 (2003)CrossRefGoogle Scholar
  27. 27.
    Varga, R., Garcia, K.L., Luna, C., Zhukov, A., Vojtanik, P., Vazquez, M.: Distribution and temperature dependence of switching field in bistable magnetic amorphous microwires. Recent Research Development in Non-Crystalline Solids 3, 85 (2003) Ed. Transworld Research Network, ISBN: 81-7895-090-1 Google Scholar
  28. 28.
    Varga, R., Zhukov, A., Blanco, J.M., Ipatov, M., Zhukova, V., Gonzalez, J., Vojtaník, P.: Supersonic domain wall in magnetic microwires. Physical Review B 76, 132406 (2007)CrossRefGoogle Scholar
  29. 29.
    Varga, R., Zhukov, A., Ipatov, A., Blanco, J.M., Gonzalez, J., Zhukova, V., Vojtaník, P.: Thermal activation over a complex energy barrier in bistable microwires. Physical Review B 73, 053605 (2006)CrossRefGoogle Scholar
  30. 30.
    Vazquez, M.: Advanced magnetic microwires. In: Kronmüller, H., Parkin, S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, p. 221. John Wiley & Sons (2007)Google Scholar
  31. 31.
    Vazquez, M., Badini, G., Pirota, K., Torrejon, J., Zhukov, A., Torcunov, A., Pfuetzner, H., Rohn, M., Merlo, A., Marquardt, B., Meydan, T.: Magnetization reversal process in bistable microwires and its temperature dependence. Int. J. Appl. Electromagnetics and Mechanics 25, 441 (2007)Google Scholar
  32. 32.
    Vojtanik, P., Degro, J., Nielsen, O.V.: Magnetic Aftereffects in CoFeSiB Metallic Glasses. Acta Phys. Slov. 42, 364 (1992)Google Scholar
  33. 33.
    Zhukov, A., Gonzalez, J., Vazquez, M., Larin, V., Torcunov, A.: Nanocrystalline and amorphous magnetic microwires. In: Nalwa, H.S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, ch. 62, p. 365. American Scientific Publishers, New York (2004)Google Scholar
  34. 34.
    Zhukov, A., Vázquez, M., Velázquez, J., Garcia, C., Valenzuela, R., Ponomarev, B.: Frequency dependence of coercivity in rapidly quenched amorphous materials. Materials Science and Engineering A 226-228, 753 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Radovan Hudák
    • 1
  • Rastislav Varga
    • 2
  • Jozef Živčák
    • 1
  • Jozef Hudák
    • 3
  • Josef Blažek
    • 3
  • Dušan Praslička
    • 3
  1. 1.Faculty of Mechanical Engineering, Department of Biomedical Engineering and MeasurementTechnical University of KosiceKosiceSlovakia
  2. 2.Faculty of science, Department of Physics of Condensed MattersPavol Jozef Safarik University in KosiceKosiceSlovakia
  3. 3.Faculty of Aeronautics, Department of Aviation Technical StudiesTechnical university of KosiceKosiceSlovakia

Personalised recommendations