Biomedical Applications of Diagnostics and Measurements by Industrial Computer Tomography

  • Radovan Hudák
  • Jozef Živčák
  • Peter Kat’uch
  • Bruno Goban
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 2)


The aim of presented study is a review on biomedical applications of industrial computed tomography (CT). Industrial CT enables in contrast to medical CT scanning of technical materials (plastic materials, low density metals, wood, etc.) but also living tissues in vitro. Important parameters for scanning are maximum size of the part 300 x 300 x 300 mm; and the best obtainable resolution of the digitalized scan is 9 μm. The termination for the scanning is also density of material, where low density medical materials like titanium or medical polymers are applicable. Presented review shows potentials of industrial CT for biomedical applications; an assembly inspection, damage analysis, inspection of materials, porosity analyses, conventional defect, and the reverse engineering.

Paper presents several biomedical studies realized by industrial CT, including epithetic foot and obtained 3D model for inner structures and materials analysis, epithetic hand glove for material homogeneity analysis, where recent thickness is required, reverse engineering of human teeth to get the STL file for further applications (fabrication by additive manufacturing), animal skulls scanning and digitalization for preservation of museum exhibits, scanning of orthosis and total hip replacements. The end of the study shows the full process of porous implant design, using metrotomographic bone-like porous structure.


Point Cloud Additive Manufacturing Reverse Engineering Computer Tomography System Computer Tomography Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ritman, E.L.: Micro-Computed Tomography—Current Status and Developments. Annual Review of Biomedical Engineering 6, 185–208 (2004)CrossRefGoogle Scholar
  2. 2.
    Lettenbauer, H., Georgi, B., Weiß, D.: Means to Verify the Accuracy of CT Systems for Metrology Applications (In the Absence of Established International Standards). In: DIR 2007 - International Symposium on Digital industrial Radiology and Computed Tomography, Lyon, France, June 25-27 (2007)Google Scholar
  3. 3.
    Lee, Y.S., Seon, J.K., Shin, V.I., Kim, G., Jeon, M.: Anatomical evaluation of CT-MRI combined femoral model. BioMedical Engineering Online 7, 6 (2008), doi:10.1186/1475-925X-7-6CrossRefGoogle Scholar
  4. 4.
    Noel, J.: Advantages of CT in 3D Scanning of Industrial Parts. 3D Scanning Technologies Magazine 1(3), 18 (2008)Google Scholar
  5. 5.
    Andreu, J.-P., Rinnhofer, A.: Modeling Knot Geometry in Norway Spruce from Industrial CT Images. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 786–791. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Gromošová, S., Rosocha, J., Živčák, J., Hudák, R., Kneppo, P.: New modular semiautomatic system for preparation of the demineralized bone matrix for clinical transplantation. In: World Congress on Medical Physics and Biomedical Engineering – WC 2006: Imaging the Future Medicine, August 27 - September 1, p. 4. Springer, Heidelberg (2006) ISBN 978-3-540-36841-0Google Scholar
  7. 7.
    Toporcer, T., Grendel, T., Vidinský, B., Gál, P., Sabo, J., Hudák, R.: Mechanical properties of skin wounds after atropa belladonna application in rats. Journal of Metals, Materials and Minerals 16(1), 25–29 (2006) ISSN: 0857-6149Google Scholar
  8. 8.
    Hutníková, L., Hudák, R., Živčák, J.: Scoliosis severity diagnostics: the new application for automatic X-ray image analysis. In: Infusing Research and Knowledge in South East Europe: 3rd Annual South-East European Doctoral Student Conference: Thessaloniky, June 26-27, pp. 1791–3578 (2008) ISBN: 978-960-89629-7-2, ISSN: 1791-3578Google Scholar
  9. 9.
    Gal, P., Kilik, R., Spakova, T., Pataky, S., Sabo, J., Pomfy, M., Longauer, F., Hudak, R.: He-Ne laser irradiation accelerates inflammatory phase and epithelization of skin wound healing in rats. Biologia. 60(6), 691–696 (2005) ISSN: 0006-3088Google Scholar
  10. 10.
    Cierniak, R.: X-Ray Computed Tomography in Biomedical Engineering. Springer, London (2011) ISBN: 978-0-85729-026-7 CrossRefGoogle Scholar
  11. 11.
    Gajdos, I., Katuch, P.: Complex approach to the reverse engineering techniques. Scientific Papers of University of Rzeszow: Zeszyty Naukowe Politechniki Rzeszowskiej: Mechanika 80(273), 81–86 (2010) ISSN: 0209-2689 Google Scholar
  12. 12.
    Wagner, J.: Contribution to the design optimization of electromechanical actuators of mechatronics systems. Metalurgija/Metallurgy 49(2), 600–603 (2010) ISSN: 0543-5846Google Scholar
  13. 13.
    Penhaker, M., Darebnikova, M., Cerny, M.: Sensor Network for Measurement and Analysis on Medical Devices Quality Control. In: Yonazi, J.J., Sedoyeka, E., Ariwa, E., El-Qawasmeh, E. (eds.) ICeND 2011. CCIS, vol. 171, pp. 182–196. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Radovan Hudák
    • 1
  • Jozef Živčák
    • 1
  • Peter Kat’uch
    • 1
  • Bruno Goban
    • 2
  1. 1.Faculty of Mechanical Engineering, Department of Biomedical Engineering and MeasurementTechnical University of KosiceKosiceSlovakia
  2. 2.CEIT-KEKosiceSlovakia

Personalised recommendations