Potential Application of P-Graph-Based Workflow in Logistics

  • József Tick
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 2)


The free movement of goods and the liberalization of the markets in Europe resulted in heavy transport and overloading of motorways and public roads, definitely putting an obstacle to economic growth in the European Union. The further construction and reconstruction of such roads cannot keep pace with the increasing demand, furthermore, puts a heavy burden on the states’ budget. Since traffic cannot be increased further more some other solutions must be found. Such an alternative solution could be to develop optional models for logistics. This paper examines the possible usage of the P-graph-based workflow for modeling logistical problems. The application of P-graph-based workflow is justified by the fact that it has already been applied successfully in other fields of industry. Further, the paper will examine the opportunities of P-graph modeling in a specific field of logistics Supply Chain Management, and will also introduce a new term the P-graph based Supply Chain Model.


Business Process Supply Chain Management Business Process Management Business Process Modeling Notation Supply Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Workflow Management Coalition Specification, Workflow Management Coalition Terminology & Glossary; Document Number WFMC-TC-1011; Document Status - Issue 3.0 (February 1999)Google Scholar
  2. 2.
    definitions, (February 12, 2012)
  3. 3.
    van der Aalst, W.M.P., van Hee, K.M.: Workflow Management – Models, Methods, and Systems. The MIT Press, Cambridge (2002)Google Scholar
  4. 4.
    Jablonski, S., Bussler, S.: Workflow Management: Modeling Concepts, Architecture and Implementation. International Thomson Computer Press (1996)Google Scholar
  5. 5.
    van der Aalst, W.M.P., ter Hofstede, A.H.M.: Verification of Workflow Task Structures: A Petri-net-based approachGoogle Scholar
  6. 6.
    Tick, J.: P-Graph-based Workflow Modelling. Acta Polytechnica Hungarica 4, 75–88 (2007)Google Scholar
  7. 7.
    Tick, J.: Application of P-graph-based Workflow for Administrative Process Modeling. In: Proceedings of the 9th IEEE International Symposium on Applied Machine Intelligence and Informatics, Slovakia, pp. 15–18 (2011)Google Scholar
  8. 8.
    Tick, J.: Visualisation and Simulation of P-graph based Workflow Systems. In: Proceedings of the 6th IEEE International Symposium on Applied Computational Intelligence and Informatics, Romania, pp. 231–234 (2011)Google Scholar
  9. 9.
    Friedler, F., Tarjan, K., Huang, Y.W., Fan, L.T.: Graph-Theoretic Approach to Process Synthesis: Axioms and Theorems. Chem. Engng. Sci. 47, 1973–1988 (1992)CrossRefGoogle Scholar
  10. 10.
    Friedler, F., Fan, L.T., Imreh, B.: Process Network Synthesis. Problem Definition Networks 28, 119–124 (1998)MathSciNetGoogle Scholar
  11. 11.
    Friedler, F., Varga, J.B., Fan, L.T.: Decision Mapping: A Tool for Consistent and Complete Decisions in Process Synthesis. Chemical Eng. Sci. 50, 1755–1768 (1995)CrossRefGoogle Scholar
  12. 12.
    Friedler, F., Tarjan, K., Huang, Y.W., Fan, L.T.: Combinatorial Algorithms for Process Synthesis. Computers Chem. Engng 16, 313–320 (1992)CrossRefGoogle Scholar
  13. 13.
    Tick, J.: P-gráf alapú workflow modellezés fuzzy kiterjesztéssel. PhD disszertáció, Pannon Egyetem (2007)Google Scholar
  14. 14.
    Nüttgens, M., Feld, T., Zimmermann, V.: Business Process Modeling with EPC and UML. Transformation or Integration? In: Schader, M., Korthaus, A. (eds.) The Unified Modeling Language – Technical Aspects and Applications, Proceedings, Heidelberg (1998)Google Scholar
  15. 15.
    Kovács, Z.: Logisztika és Üzleti Modellezés, Typotex, Budapest (2011) ISBN: 978-963-279-510-2Google Scholar
  16. 16. (January 27, 2012)
  17. 17.
    Pataricza, A. (ed.): Formalis modszerek az informatikaban, Typotex. Budapest (2006)Google Scholar
  18. 18.
    Jeffry, J.M.: Using Petri Nets to Introduce Operating System Concepts. SIGCSE Bulletin. In: Proceedings of the SIGCSE Technical Symposium on Computer Science Education, San Antonio, TX, USA, vol. 23(1), pp. 324–329 (1991)Google Scholar
  19. 19.
    Kemper, P.: Logistic Process Models Go Petri Nets. In: Proceedings 7. Workshop Algorithmen und Werkzeuge für Petrinetze, Koblenz, Germany, pp. 69–74 (2000)Google Scholar
  20. 20.
    Jensen, K.: Coloured Petri Nets and the Invariant-Method. Theor. Comput. Sci. 14, 317–336 (1981)zbMATHCrossRefGoogle Scholar
  21. 21.
    Merz, M., Moldt, D., Müller-Jones, K., Lamersdorf, W.: Workflow Modelling and Execution with Coloured Petri Nets in COSM. In: Proceedings of 16th International Conference on Application and Theory of Petri Nets (1995)Google Scholar
  22. 22.
    Liu, D., Wang, J., et al.: Modeling workflow processes with colored Petri nets. Comput. in Industr. 49(3), 267–281 (2002)CrossRefGoogle Scholar
  23. 23.
    Qu, Y., Lin, C., Wang, J.: Linear Temporal Inference of Workflow Management Systems Based on Timed Petri Nets Models. In: Han, Y., Tai, S., Wikarski, D. (eds.) EDCIS 2002. LNCS, vol. 2480, pp. 30–44. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    van der Aalst, V.M.P.: Interval Timed Coloured Petri Nets and their Analysis. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691, pp. 453–472. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  25. 25.
    Shih-Yang, Y., Po-Zung, C., Chu-Hao, S.: Using Petri Nets to Enhance Web Usage Mining. Acta Polytechnica Hungarica 4, 113–125 (2007)Google Scholar
  26. 26.
    Shairo, J.F.: Modeling The Supply Chain, USA. Duxbury Applied Series (2009) ISBN: 0-495-12609-8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Óbuda UniversityBudapestHungary

Personalised recommendations