P-Single Operators in Pipeline System of DF-KPI Architecture

  • Liberios Vokorokos
  • Norbert Ádám
  • Branislav Madoš
Part of the Topics in Intelligent Engineering and Informatics book series (TIEI, volume 2)


There has been a resurgence of interest in data flow architectures, because the dataflow model of execution offers attractive properties for parallel processing. In data flow architectures the computing process is managed by the operands flow accessed on different levels for executing instructions of dataflow program. Data flow architectures have been traditionally classified as either static or dynamic. The architecture described in this article belongs to a class of dynamic data flow architectures, in which the operand process control significantly affects the performance parameters as well as the system characteristics of the given architecture. From the many types of operators, this article provides microprogram managing for P-single operators in pipeline system of DF-KPI architecture.


Data Flow Pipeline System Coordinate Processor Data Flow Graph Instruction Store 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Budiu, M., Venkataramani, T., Chelcea, T., et al.: Spatial Computation. In: International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 14–26 (2004)Google Scholar
  2. 2.
    Dennis, J.B.: Data-Flow Supercomputers. Computer, 48–56 (1980)Google Scholar
  3. 3.
    Franklin, A.D., Luisier, M., Han, S.J., et al.: Sub-10 nm Carbon Nanotube Transistor. Nano Letters 12(2), 758–762 (2012)CrossRefGoogle Scholar
  4. 4.
    Gurd, J.R., Kirkham, C.C., Watson, I.: The Manchester Prototype Data-Flow Computer. Commun. ACM 28, 34–52 (1985)CrossRefGoogle Scholar
  5. 5.
    Györök, G., Makó, M., Lakner, J.: Combinatorics at Electronic Circuit Realization in FPAA. Acta Polytechnica Hungarica 6(1), 151–160 (2009)Google Scholar
  6. 6.
    Györök, G.: The FPAA realization of analog predictive circuit. In: 8th IEEE International Symposium on Applied Machine Intelligence and Informatics: SAMI 2010, pp. 105–108 (2010)Google Scholar
  7. 7.
    Hennessy, J.L., Patterson, D.A.: Computer Architecture – A Quantitative Approach, 4th edn. Morgan Kaufmann, San Francisco (2006)zbMATHGoogle Scholar
  8. 8.
    Jelšina, M.: Design of Data Flow KPI Computer System. elfa s.r.o, Košice (2002) (in Slovak)Google Scholar
  9. 9.
    Kopják, J., Kovács, J.: Event-driven control program models running on embedded systems. In: 10th Jubilee International Symposium on Applied Machine Intelligence and Informatics (SAMI 2012), pp. 377–382 (2012)Google Scholar
  10. 10.
    Kopják, J., Kovács, J.: Event-driven control program models running on embedded systems. In: 6th IEEE International Symposium on Applied Computational Intelligence and Informatics, Timişoara, Romania, pp. 323–326 (2011)Google Scholar
  11. 11.
    Mai, K., Paaske, T., Nuwan, J., et al.: Smart Memories: A Modular Reconfigurable Architecture. In: ISCA 2000, Vancouver, British Columbia, Canada. ACM (2000), doi: 1-58113-287-5/00/06-161Google Scholar
  12. 12.
    Mattson, T.G., Wijngaart, R., Frumkin, M.: Programming the Intel 80-core network-on-a-chip Terascale Processor. In: SC 2008, Austin, Texas, USA (November 2008), doi: 978-1-4244-2835-9/08Google Scholar
  13. 13.
    Mercaldi, M., Swanson, S., Petersen, A., et al.: Modeling Instruction Placement on a Spatial Architecture. In: SPAA 2006, July 30- August 2. ACM, Cambridge (2006), doi: 1-59593-452-9/06/0007Google Scholar
  14. 14.
    Sakaralingham, R., Nagarajan, R., McDonald, R., et al.: Distributed Microarchitectural Protools in the STRIP Prototype Processor. In: The 39th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2006 (2006), doi: 0-7695-2732-9/06Google Scholar
  15. 15.
    Selow, R., Lopes, H.S., Lima, C.: A comparison of FPGA and FPAA technologies for a signal processing application. In: Proceedings of the International Conference on Field Programmable Logic and Applications, pp. 230–235 (2009)Google Scholar
  16. 16.
    Szabó, C., Korečko, Š., Sobota, B.: Data Processing for Virtual Reality. In: Gulrez, T., Hassanien, A.E. (eds.) Advances in Robotics and Virtual Reality. ISRL, vol. 26, pp. 333–361. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Verdoscia, B., Vacarro, R.: ALFA: A Static Data Flow Architecture. In: Proceedings of Fourth Symposium on the Frontiers of Massively Parallel Computation, McLean, VA, USA, pp. 318–325 (1992)Google Scholar
  18. 18.
    Vokorokos, L.: Data Flow Computer Principles. Copycenter, spol. s.r.o., Košice (2002) (in Slovak)Google Scholar
  19. 19.
    Vokorokos, L., Ádám, N., Madoš, B., Danková, E.: Operand processing and P-single operators. In: INES 2011: 15th IEEE International Conference on Intelligent Engineering Systems, pp. 209–214 (2011)Google Scholar
  20. 20.
    Vokorokos, L., Ádám, N., Baláž, A., et al.: High-Performance Intrusion Detection System for Security Threats Identification in Computer Networks. Computer Science and Technology Research Survey 4, 54–61 (2009)Google Scholar
  21. 21.
    Waingold, E., Taylor, M., Srikrishna, D., et al.: Baring it all to software: RAW machines, Technical Report, Massachusetts Institute of Technology Cambridge, MA, USA, IEEE Computer, vol. 30(9), pp. 86–93 (1997)Google Scholar
  22. 22.
    Wintzlaw, D., Griffin, P., Hoffmann, H., et al.: On-Chip Interconnection Architecture of the Tile Processor. IEEE Micro. 27(5), 15–31 (2007), doi:10.1109/MM.2007.89CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Liberios Vokorokos
    • 1
  • Norbert Ádám
    • 1
  • Branislav Madoš
    • 1
  1. 1.Faculty of Electrical Engineering and Informatics, Department of Computers and InformaticsTechnical University of KošiceKošiceSlovakia

Personalised recommendations