Metaheuristics for Dynamic Vehicle Routing

  • Mostepha R. Khouadjia
  • Briseida Sarasola
  • Enrique Alba
  • El-Ghazali Talbi
  • Laetitia Jourdan
Part of the Studies in Computational Intelligence book series (SCI, volume 433)

Abstract

Combinatorial optimization problems are usually modeled in a static fashion. In this kind of problems, all data are known in advance, i.e. before the optimization process has started. However, in practice, many problems are dynamic, and change while the optimization is in progress. For example, in the Dynamic Vehicle Routing Problem (DVRP), which is one of the most challenging combinatorial optimization tasks, the aim consists in designing the optimal set of routes for a fleet of vehicles in order to serve a given set of customers. However, new customer orders arrive while the working day plan is in progress. In this case, routes must be reconfigured dynamically while executing the current simulation. The DVRP is an extension of the conventional routing problem, its main interest being the connection to many real-word applications (repair services, courier mail services, dial-a-ride services, etc.). In this chapter, the DVRP is examined, and a survey on solving methods such as population-based metaheuristics and trajectory-based metaheuristics is exposed. Dynamic performances measures of different metaheuristics are assessed using dedicated indicators for the dynamic environment.

Keywords

Particle Swarm Optimization Tabu Search Dynamic Vehicle Vehicle Route Problem Transportation Research Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarenga, G.B., Silva, R.M.A., Mateus, G.R.: A hybrid approach for the dynamic vehicle routing problem with time windows. In: Proceedings of the Fifth International Conference on Hybrid Intelligent Systems, pp. 61–67. IEEE Computer Society, Washington, DC (2005)Google Scholar
  2. 2.
    Attanasio, A., Cordeau, J.F., Ghiani, G., Laporte, G.: Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Computing 30(3), 377–387 (2004)CrossRefGoogle Scholar
  3. 3.
    Beaudry, A., Laporte, G., Melo, T., Nickel, S.: Dynamic transportation of patients in hospitals. OR spectrum 32(1), 77–107 (2010)MATHCrossRefGoogle Scholar
  4. 4.
    Bent, R., Van Hentenryck, P.: Dynamic vehicle routing with stochastic requests. In: Gottlob, G., Walsh, T. (eds.) Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 1362–1363. Morgan Kaufmann Publishers Inc., San Francisco (2003)Google Scholar
  5. 5.
    Bent, R., Van Hentenryck, P.: Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Operations Research 52(6), 977–987 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Bertsimas, D.J., Van Ryzin, G.J.: A stochastic and dynamic vehicle routing problem in the euclidean plane. Operations Research 39(4), 601–615 (1991)MATHCrossRefGoogle Scholar
  7. 7.
    Bertsimas, D.J., Van Ryzin, G.J.: Stochastic and dynamic vehicle routing with general demand and interarrival time distributions. Advanced Applied Probability 25, 947–978 (1993)MATHCrossRefGoogle Scholar
  8. 8.
    Bianchi, L.: Notes on dynamic vehicle routing -the state of the art-. Technical report, Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale (2000)Google Scholar
  9. 9.
    Blanton Jr., J.L., Wainwright, R.L.: Multiple vehicle routing with time and capacity constraints using genetic algorithms. In: Forrest, S. (ed.) Proceedings of the 5th International Conference on Genetic Algorithms, pp. 452–459. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  10. 10.
    Bosman, P.A.N., La Poutré, H.: Computationally Intelligent Online Dynamic Vehicle Routing by Explicit Load Prediction in an Evolutionary Algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 312–321. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Branchini, R.M., Armentano, V.A., Løkketangen, A.: Adaptive granular local search heuristic for a dynamic vehicle routing problem. Computers & Operations Research 36(11), 2955–2968 (2009)MATHCrossRefGoogle Scholar
  12. 12.
    Branke, J.: Evolutionary optimization in dynamic environments. Kluwer Academic Publishers (2002)Google Scholar
  13. 13.
    Branke, J., Middendorf, M., Noeth, G., Dessouky, M.: Waiting strategies for dynamic vehicle routing. Transportation Science 39(3), 298–312 (2005)CrossRefGoogle Scholar
  14. 14.
    Chitty, D.M., Hernandez, M.L.: A Hybrid Ant Colony Optimisation Technique for Dynamic Vehicle Routing. In: Deb, K., et al. (eds.) GECCO 2004, Part I. LNCS, vol. 3102, pp. 48–59. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Christofides, N., Beasley, J.: The period routing problem. Networks 14(2), 237–256 (1984)MATHCrossRefGoogle Scholar
  16. 16.
    Cordeau, J.F., Laporte, G.: A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation Research Part B: Methodological 37(6), 579–594 (2003)CrossRefGoogle Scholar
  17. 17.
    Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Operations Research, Management Sciences 6(1), 80–91 (1959)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    de Oliveira, S.M., de Souza, S.R., Silva, M.A.L.: A solution of dynamic vehicle routing problem with time window via ant colony system metaheuristic. In: Proceedings of the 2008 10th Brazilian Symposium on Neural Networks, SBRN 2008, pp. 21–26. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  19. 19.
    Fabri, A., Recht, P.: On dynamic pickup and delivery vehicle routing with several time windows and waiting times. Transportation Research Part B: Methodological 40(4), 335–350 (2006)CrossRefGoogle Scholar
  20. 20.
    Fagerholt, K., Foss, B.A., Horgen, O.J.: A decision support model for establishing an air taxi service: a case study. Journal of the Operational Research Society 60(9), 1173–1182 (2009)MATHCrossRefGoogle Scholar
  21. 21.
    Fiegl, C., Pontow, C.: Online scheduling of pick-up and delivery tasks in hospitals. Journal of Biomedical Informatics 42(4), 624–632 (2009)CrossRefGoogle Scholar
  22. 22.
    Fisher, M.: Vehicle routing. In: Monma, C.L., Ball, M.O., Magnanti, T.L., Nemhauser, G.L. (eds.) Network Routing. Handbooks in Operations Research and Management Science, vol. 8, pp. 1–33. Elsevier (1995)Google Scholar
  23. 23.
    Gambardella, L.M., Rizzoli, A.E., Oliverio, F., Casagrande, N., Donati, A.V., Montemanni, R., Lucibello, E.: Ant Colony Optimization for vehicle routing in advanced logistics systems. In: Proceedings of MAS 2003 - International Workshop on Modeling & Applied Simulation, pp. 3–9 (2003)Google Scholar
  24. 24.
    Garrido, P., Riff, M.C.: DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic. Journal of Heuristics 16, 795–834 (2010)MATHCrossRefGoogle Scholar
  25. 25.
    Gendreau, M., Guertin, F., Potvin, J.Y., Séguin, R.: Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Transportation Research Part C: Emerging Technologies 14(3), 157–174 (2006)CrossRefGoogle Scholar
  26. 26.
    Gendreau, M., Guertin, F., Potvin, J.Y., Taillard, E.: Parallel tabu search for real-time vehicle routing and dispatching. Transportation Science 33(4), 381–390 (1999)MATHCrossRefGoogle Scholar
  27. 27.
    Gendreau, M., Potvin, J.Y.: Dynamic vehicle routing and dispatching (1998)Google Scholar
  28. 28.
    Ghiani, G., Guerriero, F., Laporte, G., Musmanno, R.: Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies. European Journal of Operational Research 151, 1–11 (2003)MATHCrossRefGoogle Scholar
  29. 29.
    Haghani, A., Jung, S.: A dynamic vehicle routing problem with time-dependent travel times. Comput. Oper. Res. 32, 2959–2986 (2005)MATHCrossRefGoogle Scholar
  30. 30.
    Haghani, A., Yang, S.: Real-time emergency response fleet deployment: Concepts, systems, simulation & case studies. In: Dynamic Fleet Management, pp. 133–162 (2007)Google Scholar
  31. 31.
    Hanshar, F.T., Ombuki-Berman, B.M.: Dynamic vehicle routing using genetic algorithms. Applied Intelligence 27, 89–99 (2007)MATHCrossRefGoogle Scholar
  32. 32.
    Housroum, H., Hsu, T., Dupas, R., Goncalves, G.: A hybrid GA approach for solving the dynamic vehicle routing problem with time windows. In: 2nd International Conference on Information & Communication Technologies: Workshop ICT in Intelligent Transportation Systems, ICTTA 2006, vol. 1, pp. 787–792 (2006)Google Scholar
  33. 33.
    Hvattum, L.M., Løkketangen, A., Laporte, G.: Solving a dynamic and stochastic vehicle routing problem with a sample scenario hedging heuristic. Transportation Science 40, 421–438 (2006)CrossRefGoogle Scholar
  34. 34.
    Ichoua, S., Gendreau, M., Potvin, J.Y.: Diversion issues in real-time vehicle dispatching. Transportation Science 34, 426–438 (2000)MATHCrossRefGoogle Scholar
  35. 35.
    Ichoua, S., Gendreau, M., Potvin, J.Y.: Vehicle dispatching with time-dependent travel times. European Journal of Operational Research 144, 379–396 (2003)MATHCrossRefGoogle Scholar
  36. 36.
    Jih, W.R., Hsu, J.Y.J.: Dynamic vehicle routing using hybrid genetic algorithms. In: Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Michigan, vol. 1, pp. 453–458 (1999)Google Scholar
  37. 37.
    Jun, Q., Wang, J., Zheng, B.: A hybrid multi-objective algorithm for dynamic vehicle routing problems. In: Bubak, M., Albada, G.D., Dongarra, J., Sloot, P.M. (eds.) Proceedings of the 8th International Conference on Computational Science, Part III, ICCS 2008, pp. 674–681. Springer, Heidelberg (2008)Google Scholar
  38. 38.
    Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.-G.: Multi-Swarm Optimization for Dynamic Combinatorial Problems: A Case Study on Dynamic Vehicle Routing Problem. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 227–238. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  39. 39.
    Khouadjia, M.R., Jourdan, L., Talbi, E.G.: Adaptive particle swarm for solving the dynamic vehicle routing problem. In: IEEE/ACS International Conference on Computer Systems and Applications (AICCSA 2010), pp. 1–8. IEEE Computer Society (2010)Google Scholar
  40. 40.
    Kilby, P., Prosser, P., Shaw, P.: Dynamic VRPs: A study of scenarios. Technical report, University of Strathclyde, U.K. (1998)Google Scholar
  41. 41.
    Kritzinger, S., Tricoire, F., Doerner, K.F., Hartl, R.F.: Variable Neighborhood Search for the Time-Dependent Vehicle Routing Problem with Soft Time Windows. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 61–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  42. 42.
    Larsen, A.: The Dynamic Vehicle Routing Problem. PhD thesis, Technical University of Denmark (2000)Google Scholar
  43. 43.
    Larsen, A., Madsen, O.B.G., Solomon, M.M.: Partially dynamic vehicle routing-models and algorithms. Journal of the Operational Research Society 53(6), 637–646 (2002)MATHCrossRefGoogle Scholar
  44. 44.
    Larsen, A., Madsen, O.B.G., Solomon, M.M.: The a priori dynamic traveling salesman problem with time windows. Transportation Science 38(4), 459–472 (2004)CrossRefGoogle Scholar
  45. 45.
    Larsen, A., Madsen, O.B.G., Solomon, M.M.: Recent developments in dynamic vehicle routing systems. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces Series, vol. 43, pp. 199–218. Springer, US (2008)CrossRefGoogle Scholar
  46. 46.
    Lund, K., Madsen, O.B.G., Rygaard, J.M.: Vehicle routing problems with varying degrees of dynamism. Technical report, IMM, The Department of Mathematical Modelling, Technical University of Denmark (1996)Google Scholar
  47. 47.
    De Magalhães, J.M., Pinho De Sousa, J.: Dynamic VRP in pharmaceutical distribution -a case study. Central European Journal of Operations Research 14(2), 177–192 (2006)MATHCrossRefGoogle Scholar
  48. 48.
    Mitrović-Minić, S., Krishnamurti, R., Laporte, G.: Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows. Transportation Research Part B: Methodological 38(8), 669–685 (2004)CrossRefGoogle Scholar
  49. 49.
    Montemanni, R., Gambardella, L.M., Rizzoli, A.E., Donati, A.V.: A new algorithm for a dynamic vehicle routing problem based on ant colony system. Journal of Combinatorial Optimization 10, 327–343 (2005)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of Operations Research 41(4), 421–451 (1993)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Pavone, M., Bisnik, N., Frazzoli, E., Isler, V.: A stochastic and dynamic vehicle routing problem with time windows and customer impatience. Mobile Networks and Applications 14, 350–364 (2009)CrossRefGoogle Scholar
  52. 52.
    Potvin, J.Y., Xu, Y., Benyahia, I.: Vehicle routing and scheduling with dynamic travel times. Comput. Oper. Res. 33, 1129–1137 (2006)MATHCrossRefGoogle Scholar
  53. 53.
    Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research 31(12), 1985–2002 (2004)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Psaraftis, H.N.: Dynamic vehicle routing problems. Vehicle Routing: Methods and Studies 16, 223–248 (1988)MathSciNetGoogle Scholar
  55. 55.
    Psaraftis, H.N.: Dynamic vehicle routing: status and prospects. Annals of Operations Research 61, 143–164 (1995)MATHCrossRefGoogle Scholar
  56. 56.
    Rego, C.: Node-ejection chains for the vehicle routing problem: Sequential and parallel algorithms. Parallel Computing 27(3), 201–222 (2001)MATHCrossRefGoogle Scholar
  57. 57.
    Rizzoli, A., Montemanni, R., Lucibello, E., Gambardella, L.: Ant colony optimization for real-world vehicle routing problems. Swarm Intelligence 1, 135–151 (2007)CrossRefGoogle Scholar
  58. 58.
    Sarasola, B., Khouadjia, M.R., Alba, E., Jourdan, L., Talbi, E.G.: Flexible variable neighborhood search in dynamic vehicle routing. In: 8th European event on Evolutionary Algorithms in Stochastic and Dynamic Environments (EvoSTOC 2011), April 27-29 (2011)Google Scholar
  59. 59.
    Savelsbergh, M.W.P., Sol, M.: The general pickup and delivery problem. Transportation Science 29(1), 17–29 (1995)MATHCrossRefGoogle Scholar
  60. 60.
    Schilde, M., Doerner, K.F., Hartl, R.F.: Metaheuristics for the dynamic stochastic dial-a-ride problem with expected return transports. Computers & OR 38(12), 1719–1730 (2011)MATHCrossRefGoogle Scholar
  61. 61.
    Schmid, V., Doerner, K.F.: Ambulance location and relocation problems with time-dependent travel times. European Journal of Operational Research 207(3), 1293–1303 (2010)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Sun, L., Hu, X., Wang, Z., Huang, M.: A knowledge-based model representation and on-line solution method for dynamic vehicle routing problem. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007: Proceedings of the 7th International Conference on Computational Science, Part IV. LNCS, pp. 218–226. Springer, Heidelberg (2007)Google Scholar
  63. 63.
    Taillard, É.: Parallel iterative search methods for vehicle routing problems. Networks 23(8), 661–673 (1993)MATHCrossRefGoogle Scholar
  64. 64.
    Tian, Y., Song, J., Yao, D., Hu, J.: Dynamic vehicle routing problem using hybrid ant system. In: Proceedings of the IEEE Conference on Intelligent Transportation Systems, vol. 2, pp. 970–974 (2003)Google Scholar
  65. 65.
    van Hemert, J., La Poutré, J.A.H.: Dynamic Routing Problems with Fruitful Regions: Models and Evolutionary Computation. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 692–701. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  66. 66.
    Wang, J.Q., Tong, X.N., Li, Z.M.: An improved evolutionary algorithm for dynamic vehicle routing problem with time windows. In: ICCS 2007: Proceedings of the 7th International Conference on Computational Science, Part IV, pp. 1147–1154. Springer, Heidelberg (2007)Google Scholar
  67. 67.
    Weicker, K.: Performance Measures for Dynamic Environments. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 64–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  68. 68.
    Xu, J., Goncalves, G., Hsu, T.: Genetic algorithm for the vehicle routing problem with time windows and fuzzy demand. In: 2008 IEEE World Congress on Computational Intelligence, WCCI 2008, pp. 4125–4129 (2008)Google Scholar
  69. 69.
    Yang, J., Jaillet, P., Mahmassani, H.: Real-time multivehicle truckload pickup and delivery problems. Transportation Science 38, 135–148 (2004)CrossRefGoogle Scholar
  70. 70.
    Zhao, X., Goncalves, G., Dupas, R.: A genetic approach to solving the vehicle routing problem with time-dependent travel times. In: 16th Mediterranean Conference on Control and Automation, pp. 413–418 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mostepha R. Khouadjia
    • 2
  • Briseida Sarasola
    • 1
  • Enrique Alba
    • 1
  • El-Ghazali Talbi
    • 2
  • Laetitia Jourdan
    • 2
  1. 1.Departamento de Lenguajes y Ciencias de la ComputaciónUniversidad de Málaga, E.T.S.I. InformáticaMálagaSpain
  2. 2.INRIA Lille Nord-Europe, Parc Scientifique de la Haute-BorneVilleneuve d’Ascq CedexFrance

Personalised recommendations