Advertisement

Artificial Immune System for Solving Dynamic Constrained Optimization Problems

  • Victoria S. Aragón
  • Susana C. Esquivel
  • Carlos A. Coello
Part of the Studies in Computational Intelligence book series (SCI, volume 433)

Abstract

In this chapter, we analyze the behavior of an adaptive immune system when solving dynamic constrained optimization problems (DCOPs). Our proposed approach is called Dynamic Constrained T-Cell (DCTC) and it is an adaptation of an existing algorithm, which was originally designed to solve static constrained problems. Here, this approach is extended to deal with problems which change over time and whose solutions are subject to constraints. Our proposed DCTC is validated with eleven dynamic constrained problems which involve the following scenarios: dynamic objective function with static constraints, static objective function with dynamic constraints, and dynamic objective function with dynamic constraints. The performance of the proposed approach is compared with respect to that of another algorithm that was originally designed to solve static constrained problems (SMES) and which is adapted here to solve DCOPs. Besides, the performance of our proposed DCTC is compared with respect to those of two approaches which have been used to solve dynamic constrained optimization problems (RIGA and dRepairRIGA). Some statistical analysis is performed in order to get some insights into the effect that the dynamic features of the problems have on the behavior of the proposed algorithm.

Keywords

Objective Function Gray Code Dynamic Constraint Constraint Severity Dynamic Optimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aragón, V., Esquivel, S., Coello Coello, C.: Optimizing Constrained Problems through a T-Cell Artificial Immune System. Journal of Computer Science & Technology 8(3), 158–165 (2008)Google Scholar
  2. 2.
    Aragón, V., Esquivel, S., Coello Coello, C.: Solving constrained optimization using a t-cell artificial immune system. Revista Iberoamericana de Inteligencia Artificial 12(40), 7–22 (2008)Google Scholar
  3. 3.
    Aragón, V., Esquivel, S., Coello Coello, C.: Artificial Immune System for Solving Global Optimization Problems. Revista Iberoamericana de Inteligencia Artificial (AEPIA) 14(46), 3–16 (2010) ISSN: 1137-3601Google Scholar
  4. 4.
    Aragón, V., Esquivel, S., Coello Coello, C.: A Modified Version of a T-Cell Algorithm for Constrained Optimization Problems. International Journal for Numerical Methods in Engineering 84(3), 351–378 (2010)zbMATHGoogle Scholar
  5. 5.
    Aragón, V.: Optimización de Problemas con Restricciones a través de Heurísticas BioInspiradas. PhD TesisGoogle Scholar
  6. 6.
    Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers (2002)Google Scholar
  7. 7.
    Bretscher, P., Cohn, M.: A theory of self-nonself discrimination. Science 169, 1042–1049 (1970)CrossRefGoogle Scholar
  8. 8.
    Dasgupta, D., Nino, F.: Immunological Computation: Theory and Applications. Auerbach Publications, Boston (2008)CrossRefGoogle Scholar
  9. 9.
    Deb, K., Udaya Bhaskara Rao, N., Karthik, S.: Dynamic Multi-objective Optimization and Decision-Making Using Modified NSGA-II: A Case Study on Hydro-thermal Power Scheduling. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 803–817. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Jula, H., Dessouky, M., Ioannou, P., Chassiakos, A.: Container movement by trucks in metropolitan networks: modeling and optimization. Transportation Research Part E 41, 235–259 (2005)CrossRefGoogle Scholar
  11. 11.
    Mailler, R.: Comparing two approaches to dynamic, distributed constraint satisfaction. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1049–1056. ACM, New York (2005), doi:10.1145/1082473.1082632CrossRefGoogle Scholar
  12. 12.
    Male, D., Brostoff, J., Roth, D., Roitt, I.: Inmunology. Mosby, 7th edn. (2006)Google Scholar
  13. 13.
    Matzinger, P.: Tolerance, danger and the extend family. Annual Review of Immunology 12, 991–1045 (1994)CrossRefGoogle Scholar
  14. 14.
    Mertens, K., Holvoet, T., Berbers, Y.: The DynCOAA algorithm for dynamic constraint optimization problems. In: Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), pp. 1421–1423. ACM, New York (2006), doi:10.1145/1160633.1160898CrossRefGoogle Scholar
  15. 15.
    Mezura Montes, E., Coello Coello, C.: A Simple Multi-Membered Evolution Strategy to Solve Constrained Optimization Problems. IEEE Transactions on Evolutionary Computation 9(1), 1–17 (2005)CrossRefGoogle Scholar
  16. 16.
    Modi, P.J., Jung, H., Tambe, M., Shen, W.-m., Kulkarni, S.: A Dynamic Distributed Constraint Satisfaction Approach to Resource Allocation. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 685–700. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Nguyen, T., Yao, X.: Continuous Dynamic Constrained Optimisation - The Challenges. IEEE Transactions on Evolutionary Computation, 321–354 (2010)Google Scholar
  18. 18.
    Nguyen, T., Yao, X.: Solving dynamic constrained optimisation problems using repair methods (2011)Google Scholar
  19. 19.
    Richter, H.: A study of dynamic severity in chaotic fitness landscapes. The 2005 IEEE Congress on Evolutionary Computation 3, 2824–2831 (2005)CrossRefGoogle Scholar
  20. 20.
    Richter, H., Yang, S.: Memory Based on Abstraction for Dynamic Fitness Functions. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 596–605. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Richter, H., Yang, S.: Learning in Abstract Memory Schemes for Dynamic Optimization. In: Proceedings of the 2008 Fourth International Conference on Natural Computation, vol. 1, pp. 86–91. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  22. 22.
    Richter, H.: Detecting change in dynamic fitness landscapes. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation (CEC 2009), pp. 1613–1620. IEEE Press, Piscataway (2009)Google Scholar
  23. 23.
    Richter, H., Yang, S.: Learning behavior in abstract memory schemes for dynamic optimization problems. Soft Comput. 13(12), 1163–1173 (2009)zbMATHCrossRefGoogle Scholar
  24. 24.
    Richter, H.: Change detection in dynamic fitness landscapes: An immunological approach. In: World Congress on Nature Biologically Inspired Computing, pp. 719–724 (2009)Google Scholar
  25. 25.
    Richter, H.: Memory Design for Constrained Dynamic Optimization Problems. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 552–561. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Schulze, R., Dietel, F., Jandkel, J., Richter, H.: Using an artificial immune system for classifying aerodynamic instabilities of centrifugal compressors. In: World Congress on Nature Biologically Inspired Computing, pp. 31–36 (2010)Google Scholar
  27. 27.
    Richter, H., Dietel, F.: Change detection in dynamic fitness landscapes with time-dependent constraints. In: Second World Congress on Nature Biologically Inspired Computing, pp. 580–585 (2010)Google Scholar
  28. 28.
    Richter, H., Dietel, F.: Solving Dynamic Constrained Optimization Problems with Asynchronous Change Pattern. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 334–343. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Schiex, T., Verfaillie, G.: Nogood Recording for Static and Dynamic Constraint Satisfaction Problems. International Journal of Artificial Intelligence Tools 3, 48–55 (1993)Google Scholar
  30. 30.
    Schwarz, B., Bhandoola, A.: Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis. N. Immunol. Rev., 209–247 (2006)Google Scholar
  31. 31.
    Yang, S., Richter, H.: Hyper-learning for population-based incremental learning in dynamic environments. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation (CEC 2009), pp. 682–689. IEEE Press, Piscataway (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Victoria S. Aragón
    • 1
  • Susana C. Esquivel
    • 1
  • Carlos A. Coello
    • 2
  1. 1.Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)Universidad Nacional de San LuisSan LuisArgentina
  2. 2.Computer Science DepartmentCINVESTAV-IPN (Evolutionary Computation Group)México D.F.México

Personalised recommendations