Computational Support for Optimizing Street Lighting Design

Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 170)

Abstract

The design of an urban area lighting has to preserve compliance with existing standards and regulations but also satisfy non-formalized rules related to the functionality, reliability or energy efficiency. The next important step following the design process is ensuring the optimal performance of a lighting system. It may be accomplished by a suitable system control. Such a formulation of a problem implies the high computational complexity of the design tasks. For that reason it’s necessary to develop an approach allowing to overcome the complexity problem. This article presents main factors determining the street lighting design and on the other side the formal methods providing an effective support in a design process.

Keywords

Graph Transformation Urban Space Core Node Electric Energy Consumption Dummy Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandini, S., Bonomi, A., Vizzari, G., Acconci, V.: Self-organization models for adaptive environments: Envisioning and evaluation of alternative approaches. Simulation Modeling Practice and Theory 18(10), 1483–1492 (2010)CrossRefGoogle Scholar
  2. 2.
    Baumgart, S., Toledo, B., Spors, K., Schimmler, M.: PLUG: An Agent Based Prototype Validation of CAD-Constructions. In: The 2006 International Conference on Information and Knowledge Engineering (2006)Google Scholar
  3. 3.
    Czyżewski, D., Żagan, W.: Kompleksowe ujcie problematyki owietlenia miast. In: Konferencja Naukowo-Techniczna z cyklu “Energooszczędność w oświetleniu DIODY LED, Pozna (2011)Google Scholar
  4. 4.
    De Floriani, L., Falcidieno, B.: A hierarchical boundary model for solid object representation. ACM Trans. Graph. 7(1), 42–60 (1988)CrossRefGoogle Scholar
  5. 5.
    Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G.: Handbook of Graph Grammars and Computing By Graph Transformation: Applications, Languages, and Tools, vol. II. World Scientific Publishing Co., River Edge (1999)MATHCrossRefGoogle Scholar
  6. 6.
    Kotulski, L.: GRADIS – Multiagent Environment Supporting Distributed Graph Transformations. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 644–653. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Kotulski, L., Sędziwy, A.: On Complexity of Coordination of Parallel Graph Transformations in GRADIS Framework, DepCoS-Relcomex. In: 2009 Fourth International Conference on Dependability of Computer Systems, pp. 279–289 (2009)Google Scholar
  8. 8.
    Kotulski, L., Sędziwy, A.: Parallel Graph Transformations with Double Pushout Grammars. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS, vol. 6114, pp. 280–288. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Ligong, X., Zude, Z., Quan, L.: Multi-agent Architecture for Collaborative CAD System. In: 2008 International Conference on Computer Science and Information Technology, pp. 7–11 (2008)Google Scholar
  10. 10.
    Kotulski, L.: On the control complementary graph replication. In: Mazurkiewicz, J., et al. (eds.) Models and Methodology of System Dependability, Monographs of System Dependability, vol. 1, pp. 83–95. Oficyna Wydawnicza PW, Wrocław (2010)Google Scholar
  11. 11.
    Kotulski, L., Strug, B.: Distributed Adaptive Design with Hierarchical Autonomous Graph Transformation Systems. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4488, pp. 880–887. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Polska Norma PN-EN 13201 Oświetlenie dróg (Polish lighting standards – in Polish). PKN, Warszawa (2005)Google Scholar
  13. 13.
    OpenStreetMap, http://www.osm.org
  14. 14.
    Rozenberg, G.: Handbook of Graph Grammars and Computing By Graph Transformation: Foundations, vol. I. World Scientific Publishing Co., River Edge (1997)MATHCrossRefGoogle Scholar
  15. 15.
    Sędziwy, A., Kotulski, L.: Solving Large-Scale Multipoint Lighting Design Problem Using Multi-agent Environment. In: Key Engineering Materials. Advanced Design and Manufacture IV, vol. 486, pp. 179–182 (2011)Google Scholar
  16. 16.
    Sędziwy, A.: Representation of Objects in Agent-based Lighting Design Problem, Submitted to DepCoS-RELCOMEX 2012 Conference (2012 )Google Scholar
  17. 17.
    Wiórek, A.: Światło dla miasta. In: Zawód-Architekt, 05/2010, pp. 72–74 (2010) (in Polish), http://www.zawod-architekt.pl/download/ZA_2010_05.pdf
  18. 18.
    Yabuki, N., Kotani, J., Shitani, T.: A Cooperative Design Environment Using Multi-Agents and Virtual Reality. In: Luo, Y. (ed.) CDVE 2004. LNCS, vol. 3190, pp. 96–103. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of AutomaticsAGH University of Science and TechnologyKrakówPoland
  2. 2.Faculty of ArchitectureCracow University of TechnologyKrakówPoland

Personalised recommendations