Advertisement

Exploiting Multi–Objective Evolutionary Algorithms for Designing Energy–Efficient Solutions to Data Compression and Node Localization in Wireless Sensor Networks

  • Francesco Marcelloni
  • Massimo Vecchio
Part of the Studies in Computational Intelligence book series (SCI, volume 432)

Abstract

Wireless sensor network (WSN) technology promises to have a high potential to tackle environmental challenges and to monitor and reduce energy and greenhouse gas emissions. Indeed, WSNs have already been successfully employed in applications such as intelligent buildings, smart grids and energy control systems, transportation and logistics, and precision agriculture. All these applications generally require the exchange of a large amount of data and the localization of the sensor nodes. Both these two tasks can be particularly energy–hungry. Since sensor nodes are typically powered by small batteries, appropriate energy saving strategies have to be employed so as to prolong the lifetime of the WSNs and to make their use attractive and effective. To this aim, the study of data compression algorithms suitable for the reduced storage and computational resources of a sensor node, and the exploration of node localization techniques aimed at estimating the positions of all sensor nodes of a WSN from the knowledge of the exact locations of a restricted number of these nodes, have attracted a large interest in the last years. In this chapter, we discuss how multi–objective evolutionary algorithms can successfully be exploited to generate energy–aware data compressors and to solve the node localization problem. Simulation results show that, in both the tasks, the solutions produced by the evolutionary processes outperform the most interesting approaches recently proposed in the literature.

Keywords

Sensor Network Sensor Node Wireless Sensor Network Compression Ratio Pareto Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Computer Networks 38, 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Aspnes, J., Goldenberg, D., Yang, Y.R.: On the Computational Complexity of Sensor Network Localization. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 32–44. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Barr, K.C., Asanović, K.: Energy-aware lossless data compression. ACM Trans. Comput. Syst. 24(3), 250–291 (2006)CrossRefGoogle Scholar
  4. 4.
    Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M., Couach, O., Parlange, M.: SensorScope: Out-of-the-Box Environmental Monitoring. In: Proc. of the 7th Int. Conf. on Information Processing in Sensor Networks, pp. 332–343 (2008)Google Scholar
  5. 5.
    Biswas, P., Lian, T.C., Wang, T.C., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sen. Netw. 2, 188–220 (2006)CrossRefGoogle Scholar
  6. 6.
    Biswas, P., Liang, T.C., Toh, K.C., Ye, Y., Wang, T.C.: Semidefinite programming approaches for sensor network localization with noisy distance measurements. IEEE Trans. Autom. Sci. Eng. 3(4), 360–371 (2006)CrossRefGoogle Scholar
  7. 7.
    Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Proc. of the 3rd Int. Conf. on Information Processing in Sensor Networks, pp. 46–54 (2004)Google Scholar
  8. 8.
    Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – A Platform and Programming Language Independent Interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Costa, J.A., Patwari, N., Hero III, A.O.: Distributed weighted–multidimensional scaling for node localization in sensor networks. ACM Trans. on Sensor Networks 2(1), 39–64 (2006)CrossRefGoogle Scholar
  10. 10.
    Croce, S., Marcelloni, F., Vecchio, M.: Reducing power consumption in wireless sensor networks using a novel approach to data aggregation. The Computer Journal 51(2), 227–239 (2008)CrossRefGoogle Scholar
  11. 11.
    Cutler, C.C.: Differential quantization of communication signals. Patent 2 605 361 (1952)Google Scholar
  12. 12.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  13. 13.
    Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ferrière, H.D., Fabre, L., Meier, R., Metrailler, P.: TinyNode: a comprehensive platform for wireless sensor network applications. In: IPSN 2006: Proc. of the 5th Int. Conf. on Information Processing in Sensor Networks, pp. 358–365 (2006)Google Scholar
  15. 15.
    Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto Genetic Algorithm for Multiobjective Optimization. In: Proc. of the 1st IEEE World Congress on Evolutionary Computation, vol. 1, pp. 82–87 (1994)Google Scholar
  16. 16.
    Huffman, D.: A method for the construction of minimum-redundancy codes. In: Proc. of the IRE, vol. 40(9), pp. 1098–1101 (1952)Google Scholar
  17. 17.
    Ji, X., Zha, H.: Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling. In: INFOCOM 2004: Proc. of the 23rd Annual Joint Conf. of the IEEE Computer and Communications Societies, vol. 4, pp. 2652–2661 (2004)Google Scholar
  18. 18.
    Kannan, A.A., Fidan, B., Mao, G.: Analysis of flip ambiguities for robust sensor network localization. IEEE Trans. Veh. Technol. 59(4), 2057–2070 (2010)CrossRefGoogle Scholar
  19. 19.
    Kannan, A.A., Mao, G., Vucetic, B.: Simulated annealing based wireless sensor network localization with flip ambiguity mitigation. In: VTC 2006: Proc. of the 63rd IEEE Vehicular Technology Conf., pp. 1022–1026 (2006)Google Scholar
  20. 20.
    Kim, S., Kojima, M., Waki, H.: Exploiting sparsity in SDP relaxation for sensor network localization. SIAM J. Optim. 20, 192–215 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto Archived Evolution Strategy. IEEE Trans. Evol. Comput. 8(2), 149–172 (2000)Google Scholar
  22. 22.
  23. 23.
    Mao, G., Fidan, B., Anderson, B.D.O.: Wireless sensor network localization techniques. Computer Networks 51(10), 2529–2553 (2007)zbMATHCrossRefGoogle Scholar
  24. 24.
    Marcelloni, F., Vecchio, M.: A simple algorithm for data compression in wireless sensor networks. IEEE Commun. Lett. 12(6), 411–413 (2008)CrossRefGoogle Scholar
  25. 25.
    Marcelloni, F., Vecchio, M.: An efficient lossless compression algorithm for tiny nodes of monitoring wireless sensor networks. The Computer Journal 52(8), 969–987 (2009)CrossRefGoogle Scholar
  26. 26.
    Marcelloni, F., Vecchio, M.: Enabling energy-efficient and lossy-aware data compression in wireless sensor networks by multi-objective evolutionary optimization. Information Sciences 180(10), 1924–1941 (2010)CrossRefGoogle Scholar
  27. 27.
    Marcelloni, F., Vecchio, M.: A two-objective evolutionary approach to design lossy compression algorithms for tiny nodes of wireless sensor networks. Evolutionary Intelligence 3, 137–153 (2010)CrossRefGoogle Scholar
  28. 28.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 2nd edn. Springer, New York (1994)zbMATHGoogle Scholar
  29. 29.
    O’Neal, J.: Differential pulse-code modulation (PCM) with entropy coding. IEEE Trans. Inf. Theory 22(2), 169–174 (1976)zbMATHCrossRefGoogle Scholar
  30. 30.
    Patwari, N., Ash, J.N., Kyperountas, S., Hero III, A.O., Moses, R.L., Correal, N.S.: Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process. Mag. 22(4), 54–69 (2005)CrossRefGoogle Scholar
  31. 31.
    Peralta, L.M.R.: Collaborative localization in wireless sensor networks. In: SENSORCOMM 2007: Proc. of the 2007 Int. Conf. on Sensor Technologies and Applications, pp. 94–100 (2007)Google Scholar
  32. 32.
    Pradhan, S., Kusuma, J., Ramchandran, K.: Distributed compression in a dense microsensor network. IEEE Signal Process. Mag. 19(2), 51–60 (2002)CrossRefGoogle Scholar
  33. 33.
    Sadler, C.M., Martonosi, M.: Data compression algorithms for energy-constrained devices in delay tolerant networks. In: SenSys 2006: Proc. of the 4th Int. Conf. on Embedded Networked Sensor Systems, pp. 265–278 (2006)Google Scholar
  34. 34.
    Salomon, D.: Data Compression: The Complete Reference, 4th edn. Springer, London (2007)Google Scholar
  35. 35.
    Schoellhammer, T., Greenstein, B., Osterweil, E., Wimbrow, M., Estrin, D.: Lightweight Temporal Compression of microclimate datasets. In: LCN 2004: Proc. of the 29th Annual IEEE Int. Conf. on Local Computer Networks, pp. 516–524 (2004)Google Scholar
  36. 36.
    Sensirion homepage (2011), www.sensirion.com
  37. 37.
    Severi, S., Abreu, G., Destino, G., Dardari, D.: Understanding and solving flip-ambiguity in network localization via semidefinite programming. In: GLOBECOM 2009: Proc. of the 28th IEEE Conf. on Global Telecommunications, pp. 3910–3915 (2009)Google Scholar
  38. 38.
    SimIt-ARM homepage (2011), http://simit-arm.sourceforge.net/
  39. 39.
    Srinivas, N., Deb, K.: Multiobjective optimization using Nondominated Sorting in Genetic Algorithms. IEEE Trans. Evol. Comput. 2(3), 221–248 (1994)Google Scholar
  40. 40.
    Tseng, P.: Second–order cone programming relaxation of sensor network localization. SIAM J. Optim. 18(1), 156–185 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Vecchio, M., López-Valcarce, R., Marcelloni, F.: A study on the application of different two-objective evolutionary algorithms to the node localization problem in wireless sensor networks. In: ISDA 2011: Proc. of the 11th IEEE Int. Conf. on Intelligent Systems Design and Applications, pp. 1008–1013 (2011)Google Scholar
  42. 42.
    Vecchio, M., López-Valcarce, R., Marcelloni, F.: A two-objective evolutionary approach based on topological constraints for node localization in wireless sensor networks. Applied Soft Computing 12(7), 1891–1901 (2012)CrossRefGoogle Scholar
  43. 43.
    Wang, Z., Zheng, S., Ye, Y., Boyd, S.: Further relaxations of the semidefinite programming approach to sensor network localization. SIAM J. Optim. 19(2), 655–673 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Xiong, Z., Liveris, A., Cheng, S.: Distributed source coding for sensor networks. IEEE Signal Process. Mag. 21(5), 80–94 (2004)CrossRefGoogle Scholar
  45. 45.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. IEEE Trans. Evol. Comput. 8(2), 173–195 (2000)Google Scholar
  46. 46.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K., et al. (eds.) Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), pp. 95–100. Int. Center for Numerical Methods in Engineering (CIMNE), Barcelona (2002)Google Scholar
  47. 47.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)CrossRefGoogle Scholar
  48. 48.
    Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, G.V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversity of PisaPisaItaly
  2. 2.Departamento de Teoría de la Señal y las ComunicacionesUniversity of VigoVigoSpain

Personalised recommendations