Advertisement

Zukunftstechnologien

  • Jürgen Janek
  • Philipp Adelhelm
Chapter

Zusammenfassung

Die Lithium/Schwefel- und die Lithium/Sauerstoff-Zelle gehören zu den wenigen elektrochemischen Speichern, die im Vergleich zu konventionellen Lithiumionenbatterien eine erheblich höhere Energiedichte versprechen. Eigenschaften und Herausforderungen dieser Zukunftstechnologien sind Gegenstand dieses Kapitels.

Notes

Danksagung

Die Autoren danken den Mitarbeitern der Arbeitsgruppe Janek für die Unterstützung bei der Erstellung der Abbildungen und Dr. H Sommer und Dr. H. Buschmann für die Durchsicht des Manuskripts.

Literatur

  1. 1.
    Broussely M, Archdale G (2004) Li-ion batteries and portable power source prospects for the next 5–10 years. J Power Sources 136(2):386–394CrossRefGoogle Scholar
  2. 2.
    Herbert D, Ulam J (1962) Inventors; electric dry cells and storage batteriesGoogle Scholar
  3. 3.
    Nole DA, Moss V, Cordova R (1970) Inventors; battery employing lithium-sulphur electrodes with non- aqueous electrolyteGoogle Scholar
  4. 4.
    Abraham KM (1981) Status of rechargeable positive electrodes for ambient- temperature lithium batteries. J Power Sources 7(1):1−43CrossRefGoogle Scholar
  5. 5.
    Yamin H, Penciner J, Gorenshtain A, Elam M, Peled E (1985) The electrochemical-behavior of polysulfides in tetrahydrofuran. J Power Sources 14(1−3):129−134Google Scholar
  6. 6.
    Akridge JR, Mikhaylik YV, White N (2004) Li/S fundamental chemistry and application to high- performance rechargeable batteries. Solid State Ionics 175(1–4):243–245CrossRefGoogle Scholar
  7. 7.
    Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151(11):A76−A1969CrossRefGoogle Scholar
  8. 8.
    Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H et al (2012) In operando x-ray diffraction and transmission x-ray microscopy of lithium sulfur batteries. J Am Chem Soc 134(14):6337–6343CrossRefGoogle Scholar
  9. 9.
    Dominko R, Demir-Cakan R, Morcrette M, Tarascon J-M (2011) Analytical detection of soluble polysulphides in a modified Swagelok cell. Electrochem Commun 13(2):117–120CrossRefGoogle Scholar
  10. 10.
    Kumaresan K, Mikhaylik Y, White RE (.2008) A mathematical model for a lithium-sulfur cell. J Electrochem Soc 155(8):A576−A582CrossRefGoogle Scholar
  11. 11.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium- sulphur batteries. Nat Mater 8(6):500–506CrossRefGoogle Scholar
  12. 12.
    Schneider H, Garsuch A, Panchenko A, Gronwald O, Janssen N, Novak P (2012) Influence of different electrode compositions and binder materials on the performance of lithium-sulfur batteries. J Power Sources 205:420–425CrossRefGoogle Scholar
  13. 13.
    Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) Rechargeable lithium sulfur battery – II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800–A805CrossRefGoogle Scholar
  14. 14.
    Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angewandte Chemie Int Edition 49(13):2371–2374CrossRefGoogle Scholar
  15. 15.
    Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable li–sulfur batteries. J Electrochem Soc 156(8):A694–A702CrossRefGoogle Scholar
  16. 16.
    Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries. Angewandte Chemie. 125(29):7608–11CrossRefGoogle Scholar
  17. 17.
    Yang Y, Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy & Environmental Science 6(5):1552–8 CrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
    Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5CrossRefGoogle Scholar
  21. 21.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium−Air Battery: Promise and Challenges. The Journal of Physical Chemistry Letters. 1(14):2193–203CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochem 78(5):403–405CrossRefGoogle Scholar
  24. 24.
    Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):A1190–A1195CrossRefGoogle Scholar
  25. 25.
    Sawyer DT, Valentine JS (1981) How super is superoxide. Acc Chem Res 14(12):393−400CrossRefGoogle Scholar
  26. 26.
    Aurbach D, Daroux M, Faguy P, Yeager E (1991) The electrochemistry of noble-metal electrodes in aprotic organic-solvents containing lithium-salts. J Electroanal Chem 297(1):225–244CrossRefGoogle Scholar
  27. 27.
    Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Barde F et al (2011) Reactions in the rechargeable Li-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040–8047CrossRefGoogle Scholar
  28. 28.
    McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J Am Chem Soc 133(45):18038–18041CrossRefGoogle Scholar
  29. 29.
    Peng ZQ, Freunberger SA, Chen YH, Bruce PG (2012) A Reversible and Higher-Rate Li-O2 Battery. Science. 337(6094):563–6. CrossRefGoogle Scholar
  30. 30.
    Hartmann P, Bender CL, Vracar M, Dürr AK, Garsuch A, Janek J, Adelhelm P (2013) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12: 228–232 CrossRefGoogle Scholar
  31. 31.
  32. 32.
    de Jonghe LC et al (2007) inventors; protected active metal electrode and battery cell structures with non-aqueous interlayer architectureGoogle Scholar
  33. 33.
    Aurbach D et al (2009) On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J Electrochem Soc 156(8):A694−A702CrossRefGoogle Scholar
  34. 34.
    Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics. 69(3–4):173–183CrossRefGoogle Scholar
  35. 35.
    Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396–A404CrossRefGoogle Scholar
  36. 36.
    Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y (2010) New nanostructured Li2S/Silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486–1491CrossRefGoogle Scholar
  37. 37.
    Elazari R, Salitra G, Gershinsky G, Garsuch A, Panchenko A, Aurbach D (2012) Rechargeable lithiated silicon–sulfur (SLS) battery prototypes. Electrochem Commun 14(1):21–24CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Justus-Liebig-Universitat Giessen GießenDeutschland

Personalised recommendations