Common Links of Molecular Biology with Biochemistry and Physiology in Plants Under Ozone and Pathogen Attack

  • D. Ernst
  • M. Jürgensen
  • G. Bahnweg
  • W. Heller
  • G. Müller-Starck
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 220)

Abstract

This chapter focuses on the transcriptional events of stress responses upon ozone and pathogen attack. The ozone effects of herbaceous and woody plants are compared at the promoter, transcript, protein and metabolite levels. The transcription factors involved in plant abiotic and/or biotic stress responses are shown. These different approaches will be discussed at the physiological level. In addition to microarray analyses, an integration of ozone effects on the shikimate pathway and ethylene biosynthesis is given. The transcriptional differences between the sun and shade leaves of European beech, the ontogenetic effects comparing juvenile and mature trees, and gene expression studies covering two vegetation periods are discussed.

Keywords

Suppression Subtractive Hybridisation Ethylene Biosynthesis European Beech Ozone Exposure Ozone Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to our co-workers for their important contribution during the past years. We thank Ana Staninska and Gerhard Welzl for their help with statistical methods. Special thanks go to Pierre Dizengremel (Nancy-Université) and Elina Oksanen (University of Eastern Finland) for critically reading the manuscript and helpful comments. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 607) and, in part, by the European Community (Evoltree, 6th Framework Programme; COST Action E52).

References

  1. Agrawal GK, Rakwal R, Yonekura M, Kubo A, Saji H (2002) Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics 2:947–959PubMedGoogle Scholar
  2. Ahsan N, Nanjo Y, Sawada H, Kohno Y, Komatsu S (2010) Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics 10:2605–2619PubMedGoogle Scholar
  3. Azaiez A, Boyle B, Levée V, Séguin A (2009) Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi. Mol Plant Microbe Interact 22:190–200PubMedGoogle Scholar
  4. Betz GA, Gerstner E, Olbrich M, Winkler JB, Langebartels C, Heller W, Sandermann H, Ernst D (2009a) Effects of abiotic stress on gene transcription in European beech: ozone affects ethylene biosynthesis in saplings of Fagus sylvatica L. iForest 2:114–118Google Scholar
  5. Betz GA, Gerstner E, Stich S, Winkler B, Welzl G, Kremmer E, Langebartels C, Heller W, Sandermann H, Ernst D (2009b) Ozone affects shikimate pathway genes and secondary metabolites in saplings of European beech (Fagus sylvatica L.) grown under greenhouse conditions. Trees 23:539–553Google Scholar
  6. Betz GA, Knappe C, Lapierre C, Olbrich M, Welzl G, Langebartels C, Heller W, Sandermann H, Ernst D (2009c) Ozone affects shikimate pathway transcripts and monomeric lignin composition in European beech (Fagus sylvatica L.). Eur J Forest Res 128:109–116Google Scholar
  7. Bilgin DD, Aldea M, O’Neill BF, Benitez M, Li M, Clough SJ, DeLucia EH (2008) Elevated ozone alters soybean-virus interaction. Mol Plant Microbe Interact 21:1297–1308PubMedGoogle Scholar
  8. Bohler S, Bagard M, Oufir M, Planchon S, Hoffmann L, Jolivet Y, Hausman J-F, Dizengremel P, Renaut J (2007) A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism. Proteomics 7:1584–1599PubMedGoogle Scholar
  9. Bohler S, Sergeant K, Lefèvre I, Jolivet Y, Hoffmann L, Renaut J, Dizengremel P, Hausman J-F (2010) Differential impact of chronic ozone exposure on expanding and fully expanded poplar leaves. Tree Physiol 30:1415–1432PubMedGoogle Scholar
  10. Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms – getting genomics going. Curr Opin Plant Biol 9:180–188PubMedGoogle Scholar
  11. Cabané M, Pireaux J-C, Léger E, Weber E, Dizengremel P, Pollet B, Lapierre C (2004) Condensed lignins are synthesized in poplar leaves exposed to ozone. Plant Physiol 134:586–594PubMedPubMedCentralGoogle Scholar
  12. Charon C, Moreno AB, Bardou F, Crespi M (2010) Non-protein-coding RNAs and their interacting RNA-binding proteins in the plant cell nucleus. Mol Plant 3:729–739PubMedGoogle Scholar
  13. Chen CP, Frank TD, Long SP (2009) Is a short, sharp shock equivalent to long-term punishment? Contrasting the spatial pattern of acute and chronic ozone damage to soybean leaves via chlorophyll fluorescence imaging. Plant Cell Environ 32:327–335PubMedGoogle Scholar
  14. Chinnusamy V, Zhu J-K (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139PubMedPubMedCentralGoogle Scholar
  15. Chiron H, Drouet A, Claudot A-C, Eckerskorn C, Trost M, Heller W, Ernst D, Sandermann H (2000a) Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.). Plant Mol Biol 44:733–745PubMedGoogle Scholar
  16. Chiron H, Drouet A, Lieutier F, Payer H-D, Ernst D, Sandermann H (2000b) Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding and fungal infection. Plant Physiol 124:865–872PubMedPubMedCentralGoogle Scholar
  17. Chitwood DH, Timmermans MCP (2010) Small RNAs are on the move. Nature 467:415–419PubMedGoogle Scholar
  18. Cho K, Shibato J, Agrawal GK, Jung Y-H, Kubo A, Jwa N-S, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, Tanaka Y, Iwahashi H, Masuo Y, Rakwal R (2008) Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res 7:2980–2998PubMedGoogle Scholar
  19. D’Haese D, Horemans N, De Coen W, Guisez Y (2006) Identification of late O3-responsive genes in Arabidopsis thaliana by cDNA microarray analysis. Physiol Plant 128:70–79Google Scholar
  20. Dizengremel P (2001) Effects of ozone on the carbon metabolism of forest trees. Plant Physiol Biochem 39:729–742Google Scholar
  21. Eastburn DM, McElrone AJ, Bilgin DD (2011) Influence of atmospheric and climate change on plant-pathogen interactions. Plant Pathol 60:54–69Google Scholar
  22. Eckey-Kaltenbach H, Ernst D, Heller W, Sandermann H (1994) Biochemical plant responses to ozone. IV. Cross-induction of defensive pathways in parsley (Petroselinum crispum L.) plants. Plant Physiol 104:67–74PubMedPubMedCentralGoogle Scholar
  23. Ernst D, Aarts M (2004) cis Elements and transcription factors regulating gene promoters in response to environmental stress. In: Sandermann H (ed) Molecular ecotoxicology of plants, vol 170, Ecological studies. Springer, Berlin, pp 151–176Google Scholar
  24. Ernst D, Schraudner M, Langebartels C, Sandermann H (1992) Ozone-induced changes of mRNA levels of ß-1,3-glucanase, chitinase and ‘pathogenesis-related’ protein 1b in tobacco plants. Plant Mol Biol 20:673–682PubMedGoogle Scholar
  25. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371PubMedGoogle Scholar
  26. Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206PubMedGoogle Scholar
  27. Feng YW, Komatsu S, Furukawa T, Koshiba T, Kohno Y (2008) Proteome analysis of proteins responsive to ambient and elevated ozone in rice seedlings. Agric Ecosyst Environ 125:255–265Google Scholar
  28. Fleischmann F, Koehl J, Portz R, Beltrame AB, Oßwald W (2005) Physiological changes of Fagus sylvatica seedlings infected with Phytophthora citricola and the contribution of its elictin “citricolin” to pathogenesis. Plant Biol 7:650–658PubMedGoogle Scholar
  29. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442PubMedGoogle Scholar
  30. Galliano H, Cabané M, Eckerskorn C, Lottspeich F, Sandermann H, Ernst D (1993) Molecular cloning, sequence analysis and elicitor-/ozone-induced accumulation of cinnamyl alcohol dehydrogenase from Norway spruce (Picea abies L.). Plant Mol Biol 23:145–156PubMedGoogle Scholar
  31. Götz M, Albert A, Stich S, Heller W, Scherb H, Krins A, Langebartels C, Seidlitz HK, Ernst D (2010) PAR modulation of the UV-dependent levels of flavonoid metabolites in Arabidopsis thaliana (L.) Heynh. leaf rosettes: cumulative effects after a whole vegetative growth period. Protoplasma 243:95–103PubMedGoogle Scholar
  32. Grimmig B, Gonzalez-Perez MN, Leubner-Metzger G, Vögeli-Lange R, Meins F, Hain R, Penuelas J, Heidenreich B, Langebartels C, Ernst D, Sandermann H (2003) Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling. Plant Mol Biol 51:599–607PubMedGoogle Scholar
  33. Gupta P, Duplessis S, White H, Karnosky DF, Martin F, Podila GK (2005) Gene expression patterns of trembling aspen trees following long-term exposure to interacting elevated CO2 and tropospheric O3. New Phytol 167:129–142PubMedGoogle Scholar
  34. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730PubMedPubMedCentralGoogle Scholar
  35. Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? Environ Pollut 155:453–463PubMedGoogle Scholar
  36. Heidenreich B, Bieber E, Sandermann H, Ernst D (2006) Identification of a new member of the WRKY family in tobacco. Involved in ozone-induced gene regulation? Acta Physiol Plant 28:117–125Google Scholar
  37. Herbinger K, Then C, Haberer K, Alexou M, Löw M, Remele K, Rennenberg H, Matyssek R, Grill D, Wieser G, Tausz M (2007) Gas exchange and antioxidative compounds in young beech trees under free-air ozone exposure and comparisons to adult trees. Plant Biol 9:288–297PubMedGoogle Scholar
  38. Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10:833–844PubMedGoogle Scholar
  39. Janzik I, Preiskowski S, Kneifel H (2005) Ozone has dramatic effects on the regulation of the prechorismate pathway in tobacco (Nicotiana tabacum L. cv. Bel W3). Planta 223:20–27PubMedGoogle Scholar
  40. Jaspers P, Kollist H, Langebartels C, Kangasjärvi J (2005) Plant responses to ozone. In: Smirnoff N (ed) Antioxidative and reactive oxygen species in plants. Blackwell, Oxford, pp 268–292Google Scholar
  41. Jehnes S, Betz G, Bahnweg G, Haberer K, Sandermann H, Rennenberg H (2007) Tree internal signalling and defence reactions under ozone exposure in sun and shade leaves of European beech (Fagus sylvatica L.) trees. Plant Biol 9:253–264PubMedGoogle Scholar
  42. Jia X, Ren L, Chen Q-J, Li R, Tang G (2009) UV-B-responsive microRNAs in Populus tremula. J Plant Physiol 166:2046–2057PubMedGoogle Scholar
  43. Johnson Ø, Kvaalen H, Yakovlev I, Dæhlen OG, Fossdal CG, Skrøppa T (2009) An epigenetic memory from time of embryo development affects climatic adaptation in Norway spruce. In: Gusta L, Wisniewski M, Tanino K (eds) Plant cold hardiness: from the laboratory to the field. CAB, International, Wallingford, pp 99–107Google Scholar
  44. Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007-2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 72:285–314PubMedGoogle Scholar
  45. Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defence systems induced by ozone. Plant Cell Environ 17:783–794Google Scholar
  46. Kangasjärvi J, Tuomainen J, Betz C, Ernst D, Langebartels C, Sandermann H (1997) Ethylene synthesis in tomato plants exposed to ozone. The role of ethylene in ozone damage, NATO Science Partnership Sub-Series 3, vol 34. In: Kanellis AK, Chang C, Kende H, Grierson D (eds) Biology and biotechnology of the plant hormone ethylene. Kluwer, Dordrecht, pp 259–265Google Scholar
  47. Karnosky DF, Zak DR, Pregitzer KS, Awmack CS, Bockheim JG, Dickson RE, Hendrey GR, Host GE, King JS, Kopper BJ, Kruger EL, Kubiske ME, Lindroth RL, Mattson WJ, McDonald EP, Noormets A, Oksanen E, Parsons WFJ, Percy KE, Podila GK, Riemenschneider DE, Sharma P, Thakur R, Sôber A, Sôber J, Jones WS, Anttonen S, Vapaavuori E, Mankovska B, Heilman W, Isebrands JG (2003) Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct Ecol 17:289–304Google Scholar
  48. Karnosky DF, Werner H, Holopainen T, Percy K, Oksanen T, Oksanen E, Heerdt C, Fabian P, Nagy J, Heilman W, Cox R, Nelson N, Matyssek R (2007) Free-air exposure systems to scale up ozone research to mature trees. Plant Biol 9:181–190PubMedGoogle Scholar
  49. Kerner R, Winkler JB, Dupuy JW, Jürgensen M, Lindermayr C, Ernst D, Müller-Starck G (2011) Changes in the proteome of juvenile European beech following three years exposure to free-air elevated ozone. iForest 4:69–76Google Scholar
  50. Kontunen-Soppela S, Ossipov V, Ossipova S, Oksanen E (2007) Shift in birch leaf metabolome and carbon allocation during long-term open-field ozone exposure. Glob Change Biol 13:1053–1067Google Scholar
  51. Kontunen-Soppela S, Riikonen J, Ruhanen H, Brosché M, Somervuo P, Peltonen P, Kangasjärvi J, Auvinen P, Paulin L, Keinänen M, Oksanen E, Vapaavuori E (2010a) Differential gene expression in senescing leaves of two silver birch genotypes in response to elevated CO2 and tropospheric ozone. Plant Cell Environ 33:1016–1028PubMedGoogle Scholar
  52. Kontunen-Soppela S, Parviainen J, Ruhanen H, Brosché M, Keinänen M, Thakur RC, Kolehmainen M, Kangasjärvi J, Oksanen E, Karnosky DF, Vapaavuori E (2010b) Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence. Environ Pollut 158:959–968PubMedGoogle Scholar
  53. Kostiainen K, Kaakinen S, Warsta E, Kubiske ME, Nelson ND, Sober J, Karnosky DF, Saranpää P, Vapaavuori E (2008) Wood properties of trembling aspen and paper birch after 5 years of exposure to elevated concentrations of CO2 and O3. Tree Physiol 28:805–813PubMedGoogle Scholar
  54. Langebartels C, Ernst D, Heller W, Lütz C, Payer H-D, Sandermann H (1997) Ozone responses of trees: results from controlled chamber exposures at the GSF phytotron. In: Sandermann H, Wellburn AR, Heath Rl (eds) Forest decline and ozone. A comparison of controlled chamber and field experiments, vol 127, Ecological studies. Springer, Berlin, pp 163–200Google Scholar
  55. Langebartels C, Heller W, Führer G, Lippert M, Simons S, Sandermann H (1998) Memory effects in the action of ozone on conifers. Ecotoxicol Environ Saf 41:62–72PubMedGoogle Scholar
  56. Langebartels C, Schraudner M, Heller W, Ernst D, Sandermann H (2002) Oxidative stress and defense reactions in plants exposed to air pollutants and UV-B radiation. In: Inzé D, Van Montagu M (eds) Oxidative stress in plants. Taylor & Francis, London, pp 105–135Google Scholar
  57. Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser M-T, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602PubMedPubMedCentralGoogle Scholar
  58. Lee S, Yun S-C (2006) The ozone stress transcriptome of pepper (Capsicum annuum L.). Mol Cells 21:197–205PubMedGoogle Scholar
  59. Leubner-Metzger G, Meins F (1999) Functions and regulation of plant β-1,3-glucanases (PR-2). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Ratun, pp 49–76Google Scholar
  60. Li P, Mane SP, Sioson AA, Vasquez Robinet C, Heath LS, Bohnert HJ, Grene R (2006) Effects of chronic ozone exposure on gene expression in Arabidopsis thaliana ecotypes and in Thellungiella halophila. Plant Cell Environ 29:854–868PubMedGoogle Scholar
  61. Lieutier F, Sauvard D, Brignolas F, Picron V, Yart A, Bastien C, Jay-Allemand C (1996) Changes in phenolic metabolites of Scots-pine phloem induced by Ophiostoma brunneo-ciliatum, a bark-beetle-associated fungus. Eur J Forest Pathol 26:145–158Google Scholar
  62. Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5:e10326PubMedPubMedCentralGoogle Scholar
  63. Löw M, Häberle K-H, Warren CR, Matyssek R (2007) O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure. Plant Biol 9:197–206PubMedGoogle Scholar
  64. Lu S, Sun Y-H, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203PubMedPubMedCentralGoogle Scholar
  65. Lu S, Sun Y-H, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151PubMedGoogle Scholar
  66. Ludwikow A, Sadowski J (2008) Gene networks in plant ozone stress response and tolerance. J Integr Plant Biol 50:1256–1267PubMedGoogle Scholar
  67. Ludwikow A, Gallois P, Sadowski J (2004) Ozone-induced oxidative stress response in Arabidopsis: transcription profiling by microarray approach. Cell Mol Biol Lett 9:829–842PubMedGoogle Scholar
  68. Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N, Guevara-Garcia A, Day P, Raina R, Fedoroff NV (2003) Characterizing the stress/defense transcriptome of Arabidopsis. Genome Biol 4:R20PubMedPubMedCentralGoogle Scholar
  69. Matyssek R, Sandermann H (2003) Impact of ozone on trees: an ecophysiological perspective. In: Esser K, Lüttge U, Beyschlag W, Hellwig F (eds) Progress in botany, vol 64. Springer, Berlin, pp 349–404Google Scholar
  70. Matyssek R, Agerer R, Ernst D, Munch J-C, Oßwald W, Pretzsch H, Priesack E, Schnyder H, Treutter D (2005) The plant’s capacity in regulating resource demand. Plant Biol 7:560–580PubMedGoogle Scholar
  71. Matyssek R, Bahnweg G, Ceulemans R, Fabian P, Grill D, Hanke DE, Kraigher H, Oßwald W, Rennenberg H, Sandermann H, Tausz M, Wieser G (2007) Synopsis of the CASIROZ case study: carbon sink strength of Fagus sylvatica L. in a changing environment – experimental risk assessment of mitigation by chronic ozone impact. Plant Biol 9:163–180PubMedGoogle Scholar
  72. Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment for forest trees more mechanistic. Environ Pollut 156:567–582PubMedGoogle Scholar
  73. Matyssek R, Karnosky DF, Wieser G, Percy K, Oksanen E, Grams TEE, Kubiske M, Hanke D, Pretzsch H (2010a) Advances in understanding ozone impact on forest trees: messages from novel phytotron and free-air fumigation studies. Environ Pollut 158:1990–2006PubMedGoogle Scholar
  74. Matyssek R, Wieser G, Ceulemans R, Rennenberg H, Pretzsch H, Haberer K, Löw M, Nunn AJ, Werner H, Wipfler P, Oßwald W, Nikolova P, Hanke DE, Kraigher H, Tausz M, Bahnweg G, Kitao M, Dieler J, Sandermann H, Herbinger K, Grebenc T, Blumenröther M, Deckmyn G, Grams TEE, Heerdt C, Leuchner M, Fabian P, Häberle K-H (2010b) Enhanced ozone strongly reduces carbon sink strength of adult beech (Fagus sylvatica) – resume from the free-air fumigation study at Kranzberg Forest. Environ Pollut 158:2527–2532PubMedGoogle Scholar
  75. Miranda M, Ralph SG, Mellway R, White R, Heath MC, Bohlmann J, Constabel CP (2007) The transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol Plant Microbe Interact 20:816–831PubMedGoogle Scholar
  76. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19PubMedGoogle Scholar
  77. Miyazaki S, Fredricksen M, Hollis KC, Poroyko V, Shepley D, Galbraith DW, Long SP, Bohnert HJ (2004) Transcript expression profiles of Arabidopsis thaliana grown under controlled conditions and open-air elevated concentrations of CO2 and of O3. Field Crops Res 90:47–59Google Scholar
  78. Moeder W, Barry CS, Tauriainen AA, Betz C, Tuomainen J, Utriainen M, Grierson D, Sandermann H, Langebartels C, Kangasjärvi J (2002) Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxlic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiol 130:1918–1926PubMedPubMedCentralGoogle Scholar
  79. Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049PubMedGoogle Scholar
  80. Nunn AJ, Anegg S, Betz G, Simons S, Kalisch G, Seidlitz HK, Grams TEE, Häberle K-H, Matyssek R, Bahnweg G, Sandermann H, Langebartels C (2005a) Role of ethylene in the regulation of cell death and leaf loss in ozone-exposed European beech. Plant Cell Environ 28:886–897Google Scholar
  81. Nunn AJ, Kozovits AR, Reiter IM, Heerdt C, Leuchner M, Lütz C, Liu X, Löw M, Winkler JB, Grams TEE, Häberle K-H, Werner H, Fabian P, Rennenberg H, Matyssek R (2005b) Comparison of ozone uptake and sensitivity between a phytotron study with young beech and a field experiment with adult beech (Fagus sylvatica). Environ Pollut 137:494–506PubMedGoogle Scholar
  82. Oksanen E (2003) Response of selected birch (Betula pendula Roth) clones to ozone change over time. Plant Cell Environ 26:875–886PubMedGoogle Scholar
  83. Oksman-Caldentey K-M, Saito K (2005) Integrating genomics and metabolomics for engineering plant metabolic pathways. Curr Opin Biotechnol 16:174–179PubMedGoogle Scholar
  84. Olbrich M, Betz G, Gerstner E, Langebartels C, Sandermann H, Ernst D (2005) Transcriptome analysis of ozone-responsive genes in leaves of European beech (Fagus sylvatica L.). Plant Biol 7:670–676PubMedGoogle Scholar
  85. Olbrich M, Gerstner E, Welzl G, Winkler JB, Ernst D (2009) Transcript responses in leaves of ozone-treated beech saplings at an outdoor free air model fumigation site over two growing seasons. Plant Soil 323:61–74Google Scholar
  86. Olbrich M, Gerstner E, Bahnweg G, Häberle K-H, Matyssek R, Welzl G, Heller W, Ernst D (2010a) Transcriptional signatures in leaves of adult European beech trees (Fagus sylvatica L.) in an experimentally enhanced free air ozone setting. Environ Pollut 158:977–982PubMedGoogle Scholar
  87. Olbrich M, Knappe C, Wenig M, Gerstner E, Häberle K-H, Kitao M, Matyssek R, Stich S, Leuchner M, Werner H, Schlink K, Müller-Starck G, Welzl G, Scherb H, Ernst D, Heller W, Bahnweg G (2010b) Ozone fumigation (twice ambient) reduces leaf infestation following natural and artificial inoculation by the endophytic fungus Apiognomonia errabunda of adult European beech trees. Environ Pollut 158:1043–1050PubMedGoogle Scholar
  88. Ossipov V, Ossipova S, Bykov V, Oksanen E, Koricheva J, Haukioja E (2008) Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics 4:39–51Google Scholar
  89. Oßwald W, Koehl J, Heiser I, Nechwatal J, Fleischmann F (2004) New insights in the genus Phytophthora and current diseases these pathogens cause in their ecosystem. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol 65. Springer, Berlin, pp 436–466Google Scholar
  90. Overmyer K, Brosché M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342PubMedGoogle Scholar
  91. Overmyer K, Kollist H, Tuominen H, Betz C, Langebartels C, Wingsle G, Kangasjärvi S, Brader G, Mullineaux P, Kangasjärvi J (2008) Complex phenotypic profiles leading to ozone sensitivity in Arabidopsis thaliana mutants. Plant Cell Environ 31:1237–1249PubMedGoogle Scholar
  92. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655PubMedPubMedCentralGoogle Scholar
  93. Paolacci AR, Miraldi C, Tanzarella OA, Badiani M, Porceddu E, Nali C, Lorenzini G, Ciaffi M (2007) Gene expression induced by chronic ozone in the Mediterranean shrub Phillyrea latifolia: analysis by cDNA-AFLP. Tree Physiol 27:1541–1550PubMedGoogle Scholar
  94. Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol Plant 100:264–273Google Scholar
  95. Peltonen PA, Vapaavuori E, Julkunen-Tiitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Glob Change Biol 11:1305–1324Google Scholar
  96. Portz RL, Fleischmann F, Koehl J, Fromm J, Ernst D, Pascholati SF, Osswald WF (2011) Histological, physiological and molecular investigations of Fagus sylvatica seedlings infected with Phytophthora citricola. Forest Pathol 41:202–211Google Scholar
  97. Pretzsch H, Dieler J, Matyssek R, Wipfler P (2010) Tree and stand growth of mature Norway spruce and European beech under long-term ozone fumigation. Environ Pollut 158:1061–1070PubMedGoogle Scholar
  98. Pritsch K, Ernst D, Fleischmann F, Gayler S, Grams TEE, Göttlein A, Heller W, Koch N, Lang H, Matyssek R, Munch JC, Olbrich M, Scherb H, Stich S, Winkler JB, Schloter M (2008) Plant and soil system responses to ozone after 3 years in a lysimeter study with juvenile beech (Fagus sylvatica L.). Water Air Soil Pollut Focus 8:139–154Google Scholar
  99. Puckette MC, Tang Y, Mahalingam R (2008) Transcriptomic changes induced by acute ozone in resistant and sensitive Medicago trunculata accessions. BMC Plant Biol 8:46PubMedPubMedCentralGoogle Scholar
  100. Puckette M, Peal L, Steele J, Tang Y, Mahalingam R (2009) Ozone responsive genes in Medicago trunculata: analysis by suppression subtraction hybridization. J Plant Physiol 166:1284–1295PubMedGoogle Scholar
  101. Rao MV, Koch JR, Davis KR (2000) Ozone: a tool for probing programmed cell death in plants. Plant Mol Biol 44:345–358PubMedGoogle Scholar
  102. Renaut J, Hausman J-F, Wisniewski ME (2006) Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol Plant 126:97–109Google Scholar
  103. Renaut J, Bohler S, Hausman J-F, Hoffmann L, Sergeant K, Ahsan N, Jolivet Y, Dizengremel P (2009) The impact of atmospheric composition on plants: a case study of ozone and poplar. Mass Spectrom Rev 28:495–516PubMedGoogle Scholar
  104. Ries G, Heller W, Puchta H, Sandermann H, Seidlitz HK, Hohn B (2000) Elevated UV-B radiation reduces genome stability in plants. Nature 406:98–101PubMedGoogle Scholar
  105. Rizzo M, Bernardi R, Salvini M, Nali C, Lorenzini G, Durante M (2007) Identification of differentially expressed genes induced by ozone stress in sensitive and tolerant poplar hybrids. J Plant Physiol 164:945–949PubMedGoogle Scholar
  106. Ros B, Thümmler F, Wenzel G (2004) Analysis of differentially expressed genes in a susceptible and moderately resistant potato cultivar upon Phytophthora infestans infection. Mol Plant Pathol 5:191–201PubMedGoogle Scholar
  107. Rosemann D, Heller W, Sandermann H (1991) Biochemical plant responses to ozone. II. Induction of stilbene biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Plant Physiol 97:1280–1286PubMedPubMedCentralGoogle Scholar
  108. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510PubMedGoogle Scholar
  109. Sandermann H (1996) Ozone and plant health. Annu Rev Phytopathol 34:347–366PubMedGoogle Scholar
  110. Sandermann H, Matyssek R (2004) Scaling up from molecular to ecological processes. In: Sandermann H (ed) Molecular ecotoxicology of plants, vol 170, Ecological studies. Springer, Berlin, pp 207–226Google Scholar
  111. Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50Google Scholar
  112. Sarkar A, Rakwal R, Agrawal SB, Shibato J, Ogawa Y, Yoshida Y, Agrawal GK, Agrawal M (2010) Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches. J Proteome Res 9:4565–4584PubMedGoogle Scholar
  113. Sasek TW, Richardson CJ, Fendick EA, Bevington SR, Kress LW (1991) Carryover effects of acidic rain and ozone on the physiology of multiple flushes of loblolly pine seedlings. Forest Sci 37:1078–1098Google Scholar
  114. Schlink K (2009) Identification and characterization of differentially expressed genes from Fagus sylvatica roots after infection with Phytophthora citricola. Plant Cell Rep 28:873–882PubMedGoogle Scholar
  115. Schneiderbauer A, Back E, Sandermann H, Ernst D (1995) Ozone induction of extensin mRNA in Scots pine, Norway spruce and European beech. New Phytol 130:225–230Google Scholar
  116. Schraudner M, Ernst D, Langebartels C, Sandermann H (1992) Biochemical plant responses to ozone. III. Activation of the defense-related proteins β-1,3-glucanase and chitinase in tobacco leaves. Plant Physiol 99:1321–1328PubMedPubMedCentralGoogle Scholar
  117. Schubert R, Fischer R, Hain R, Schreier PH, Bahnweg G, Ernst D, Sandermann H (1997) An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol Biol 34:417–426PubMedGoogle Scholar
  118. Schütt P, Schuck HJ, Stimm B (1992) Lexikon der Forstbotanik. Ecomed Verlagsgesellschaft, LandsbergGoogle Scholar
  119. Tamaoki M, Nakajima N, Kubo A, Aono M, Matsuyama T, Saji H (2003) Transcriptome analysis of O3-exposed Arabidopsis reveals that multiple signal pathways act mutually antagonistically to induce gene expression. Plant Mol Biol 53:443–456PubMedGoogle Scholar
  120. Torres NL, Cho K, Shibato J, Hirano M, Kubo A, Masuo Y, Iwahashi H, Jwa N-S, Agrawal GK, Rakwal R (2007) Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama. Electrophoresis 28:4369–4381PubMedGoogle Scholar
  121. Tosti N, Pasqualini S, Borgogni A, Ederli L, Falistocco E, Crispi S, Paolocci F (2006) Gene expression profiles of O3-treated Arabidopsis plants. Plant Cell Environ 29:1686–1702PubMedGoogle Scholar
  122. Trauger SA, Kalisak E, Kalisiak J, Morita H, Weinberg MV, Menon AL, Poole FL II, Adams MWW, Siuzdak G (2008) Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile. J Proteome Res 7:1027–1035PubMedGoogle Scholar
  123. Tretheway RN (2001) Gene discovery via metabolic profiling. Curr Opin Biotechnol 12:135–138Google Scholar
  124. Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138PubMedGoogle Scholar
  125. Valcu C-M, Junqueira M, Shevchenko A, Schlink K (2009) Comparative proteomic analysis of responses to pathogen infection and wounding in Fagus sylvatica. J Proteome Res 8:4077–4091PubMedGoogle Scholar
  126. van Bentem SD, Roitinger E, Anrather D, Csaszar E, Hirt H (2006) Phosphoproteomics as a tool to unravel plant regulatory mechanisms. Physiol Plant 126:110–119Google Scholar
  127. Wieser G, Hecke K, Tausz M, Häberle K-H, Grams TEE, Matyssek R (2003) The influence of microclimate and tree age on the defense capacity of European beech (Fagus sylvatica L.) against oxidative stress. Ann For Sci 60:131–135Google Scholar
  128. Williams ME (2011) Introduction to epigenetic gene regulation. In: Plant Cell. Teaching tools in plant biology. http:www.plantcell.org/site/teachingtools/TTPB4LectureNotes.pdf Cited 31 March 2011Google Scholar
  129. Winkler JB, Lang H, Graf W, Reth S, Munch JC (2009) Experimental setup of field lysimeters for studying effects of elevated ozone and below-ground pathogen infection on a plant-soil-system of juvenile beech (Fagus sylvatica L.). Plant Soil 323:7–19Google Scholar
  130. Wipfler P, Seifert T, Heerdt C, Werner H, Pretzsch H (2005) Growth of adult Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) under free-air ozone fumigation. Plant Biol 7:611–618PubMedGoogle Scholar
  131. Wrzaczek M, Brosché M, Salojärvi J, Kangasjärvi S, Idänheimo N, Mersmann S, Robatzek S, Karpiński S, Karpińska B, Kangasjärvi J (2010) Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol 10:95PubMedPubMedCentralGoogle Scholar
  132. Wulff A, Hänninen O, Tuomainen A, Kärenlampi L (1992) A method for open-air exposure of plants to ozone. Ann Bot Fennici 29:253–262Google Scholar
  133. Wustman BA, Oksanen E, Karnosky DF, Noormets A, Isebrands JG, Pregitzer KS, Hendrey GR, Sober J, Podila GK (2001) Effects of elevated CO2 and O3 on aspen clones varying in O3 sensitivity: can CO2 ameliorate the harmful effects of O3? Environ Pollut 115:473–481PubMedGoogle Scholar
  134. Zinser C, Seidlitz HK, Welzl G, Sandermann H, Heller W, Ernst D, Rau W (2007) Transcriptional profiling of summer wheat, grown under different realistic UV-B irradiation regimes. J Plant Physiol 164:913–922PubMedGoogle Scholar
  135. Zistler C (2007) Studien zur Genexpression in Apfelblättern (Malus domestica) nach Inokulation mit Venturia inaequalis. PhD thesis, Technische Universität München bitte.http://nbn-resolving.de/urn/resolver.pl?urn:de:bvb:91-diss-20070905-627157-1-4

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • D. Ernst
    • 1
  • M. Jürgensen
    • 1
  • G. Bahnweg
    • 1
  • W. Heller
    • 1
  • G. Müller-Starck
    • 2
  1. 1.Institute of Biochemical Plant PathologyHelmholtz Zentrum München-, German Research Center for Environmental HealthNeuherbergGermany
  2. 2.Section of Forest GeneticsTechnische Universität MünchenFreisingGermany

Personalised recommendations