The Complexity of Intersecting Finite Automata Having Few Final States

  • Michael Blondin
  • Pierre McKenzie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7353)


The problem of determining whether several finite automata accept a common word is closely related to the well-studied membership problem in transformation monoids. We review the complexity of the intersection problem and raise the issue of limiting the number of final states in the automata involved. In particular, we consider commutative automata with at most two final states and we partially elucidate the complexity of their intersection nonemptiness and related problems.


Abelian Group Permutation Group Membership Problem Commutative Monoids Unary Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABO99]
    Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Comput. Complex. 8(2), 99–126 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [AV10]
    Arvind, V., Vijayaraghavan, T.C.: Classifying problems on linear congruences and abelian permutation groups using logspace counting classes. Comput. Complex. 19, 57–98 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. [Bal02]
    Bala, S.: Intersection of Regular Languages and Star Hierarchy. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 159–169. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. [BDHM92]
    Buntrock, G., Damm, C., Hertrampf, U., Meinel, C.: Structure and importance of logspace-mod class. Theory of Computing Systems 25, 223–237 (1992)MathSciNetzbMATHGoogle Scholar
  5. [Bea88a]
    Beaudry, M.: Membership testing in commutative transformation semigroups. Information and Computation 79(1), 84–93 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [Bea88b]
    Beaudry, M.: Membership testing in transformation monoids. PhD thesis, McGill University (1988)Google Scholar
  7. [BLS87]
    Babai, L., Luks, E.M., Seress, A.: Permutation groups in NC. In: Proc. 19th Annual ACM Symposium on Theory of Computing, pp. 409–420 (1987)Google Scholar
  8. [BMT92]
    Beaudry, M., McKenzie, P., Thérien, D.: The membership problem in aperiodic transformation monoids. J. ACM 39(3), 599–616 (1992)zbMATHCrossRefGoogle Scholar
  9. [FHL80]
    Furst, M.L., Hopcroft, J.E., Luks, E.M.: Polynomial-time algorithms for permutation groups. In: FOCS, pp. 36–41 (1980)Google Scholar
  10. [Gal76]
    Galil, Z.: Hierarchies of complete problems. Acta Informatica 6, 77–88 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  11. [GJ79]
    Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman and Company (1979)Google Scholar
  12. [HK11]
    Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite automata – a survey. Inf. Comput. 209(3), 456–470 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  13. [HRV00]
    Hertrampf, U., Reith, S., Vollmer, H.: A note on closure properties of logspace mod classes. Inf. Process. Lett. 75, 91–93 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  14. [JLL76]
    Jones, N.D., Lien, Y.E., Laaser, W.T.: New problems complete for nondeterministic log space. Theory of Computing Systems 10, 1–17 (1976)MathSciNetzbMATHGoogle Scholar
  15. [KLV03]
    Karakostas, G., Lipton, R.J., Viglas, A.: On the complexity of intersecting finite state automata and NL versus NP. Theoretical Computer Science 302(1-3), 257–274 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. [Knu81]
    Knuth, D.E.: The art of computer programming: seminumerical algorithms, 2nd edn., vol. 2. Addison-Wesley (1981)Google Scholar
  17. [Koz77]
    Kozen, D.: Lower bounds for natural proof systems. In: Proc. 18th Annual Symposium on Foundations of Computer Science, pp. 254–266 (1977)Google Scholar
  18. [LM88]
    Luks, E.M., McKenzie, P.: Parallel algorithms for solvable permutation groups. J. Comput. Syst. Sci. 37(1), 39–62 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  19. [LR92]
    Lange, K.-J., Rossmanith, P.: The Emptiness Problem for Intersections of Regular Languages. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 346–354. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  20. [Luk86]
    Luks, E.M.: Parallel algorithms for permutation groups and graph isomorphism. In: FOCS, pp. 292–302. IEEE Computer Society (1986)Google Scholar
  21. [Luk90]
    Luks, E.M.: Lectures on polynomial-time computation in groups. Technical report. College of Computer Science, Northeastern University (1990)Google Scholar
  22. [MC87]
    McKenzie, P., Cook, S.A.: The parallel complexity of abelian permutation group problems. SIAM J. Comput. 16, 880–909 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  23. [Mul87]
    Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica 7, 101–104 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  24. [Rei05]
    Reingold, O.: Undirected st-connectivity in log-space. In: Proc. 37th Annual ACM Symposium on Theory of Computing, pp. 376–385 (2005)Google Scholar
  25. [Sav70]
    Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  26. [War01]
    Wareham, H.T.: The Parameterized Complexity of Intersection and Composition Operations on Sets of Finite-State Automata. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Blondin
    • 1
  • Pierre McKenzie
    • 1
  1. 1.Département d’informatique et de recherche opérationnelleUniversité de MontréalMontréalCanada

Personalised recommendations