General Quantitative Specification Theories with Modalities

  • Sebastian S. Bauer
  • Uli Fahrenberg
  • Axel Legay
  • Claus Thrane
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7353)


This paper proposes a new theory of quantitative specifications. It generalizes the notions of step-wise refinement and compositional design operations from the Boolean to an arbitrary quantitative setting. It is shown that this general approach permits to recast many existing problems which arise in system design.


Transition System Triangle Inequality Structural Composition Label Transition System Trace Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer (2007)Google Scholar
  2. 2.
    Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.: Quantitative Refinement for Weighted Modal Transition Systems. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 60–71. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Bauer, S.S., Juhl, L., Larsen, K.G., Legay, A., Srba, J.: Extending modal transition systems with structured labels. Math. Struct. CS (2012) Google Scholar
  4. 4.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of real-time systems using priced timed automata. CACM 54(9), 78–87 (2011)Google Scholar
  5. 5.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative languages. ACM Trans. Comp. Logic 11(4) (2010)Google Scholar
  6. 6.
    David, A., Larsen, K.G., Legay, A., Nyman, U., Wąsowski, A.: Timed I/O automata: A complete specification theory for real-time systems. In: HSCC, pp. 91–100. ACM (2010)Google Scholar
  7. 7.
    de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Soft. Eng. 35(2), 258–273 (2009)CrossRefGoogle Scholar
  8. 8.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Th. 8, 109–113 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy Games in Multiweighted Automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 95–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Fahrenberg, U., Legay, A., Thrane, C.: The quantitative linear-time–branching-time spectrum. In: FSTTCS. LIPIcs, vol. 13, pp. 103–114 (2011)Google Scholar
  11. 11.
    Fahrenberg, U., Legay, A., Wąsowski, A.: Vision Paper: Make a Difference! (Semantically). In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 490–500. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Fahrenberg, U., Thrane, C., Larsen, K.G.: Distances for weighted transition systems: Games and properties. In: QAPL. EPTCS, vol. 57, pp. 134–147 (2011)Google Scholar
  13. 13.
    Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-Based Model Checking Using Modal Transition Systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Gruler, A., Leucker, M., Scheidemann, K.: Modeling and Model Checking Software Product Lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 113–131. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Grumberg, O., Lange, M., Leucker, M., Shoham, S.: Don’t Know in the μ-Calculus. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 233–249. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Henzinger, T.A., Majumdar, R., Prabhu, V.S.: Quantifying Similarities Between Timed Systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 226–241. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Juhl, L., Larsen, K.G., Srba, J.: Modal transition systems with weight intervals. J. Logic Alg. Prog. (2012)Google Scholar
  18. 18.
    Larsen, K.G.: Modal Specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 232–246. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  19. 19.
    Larsen, K.G., Fahrenberg, U., Thrane, C.: Metrics for weighted transition systems: Axiomatization and complexity. Th. Comp. Sci. 412(28), 3358–3369 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Munkres, J.R.: Topology. Prentice Hall (2000)Google Scholar
  21. 21.
    Nyman, U.: Modal Transition Systems as the Basis for Interface Theories and Product Lines. PhD thesis, Aalborg University (September 2008)Google Scholar
  22. 22.
    Rasmussen, J.I., Larsen, K.G., Subramani, K.: On using priced timed automata to achieve optimal scheduling. Formal Meth. Syst. Design 29(1), 97–114 (2006)zbMATHCrossRefGoogle Scholar
  23. 23.
    Thrane, C., Fahrenberg, U., Larsen, K.G.: Quantitative simulations of weighted transition systems. J. Logic Alg. Prog. 79(7), 689–703 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    van Breugel, F.: A theory of metric labelled transition systems. Annals of the New York Academy of Sciences 806(1), 69–87 (1996)CrossRefGoogle Scholar
  25. 25.
    van Breugel, F.: A Behavioural Pseudometric for Metric Labelled Transition Systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 141–155. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Zwick, U., Paterson, M.: The Complexity of Mean Payoff Games. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 1–10. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sebastian S. Bauer
    • 1
  • Uli Fahrenberg
    • 2
  • Axel Legay
    • 2
  • Claus Thrane
    • 3
  1. 1.Ludwig-Maximilians-Universität MünchenGermany
  2. 2.Irisa/INRIA RennesFrance
  3. 3.Aalborg UniversityDenmark

Personalised recommendations