Advertisement

Boolean Composition of Visual Secret Sharing Schemes

  • Hans Ulrich Simon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7353)

Abstract

In this paper, we analyze the disjunction and the conjunction of two access structures for visual secret sharing schemes. The latter operation, when applied to k-out-of-n schemes, leads to schemes with multiple thresholds. We precisely determine the maximum relative contrast for schemes of this type. As in the case of classical schemes with a single threshold, the analysis proceeds by revealing a central relation between the relative contrast in a visual secret sharing scheme and the error-term in a related problem of approximation-theoretic flavor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for general access structures. Information and Computation 129(2), 86–106 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Henk, E.R., van Tilborg, H.C.A.: Constructions and properties of k out of n visual secrete sharing schemes. Design, Codes and Cryptography 11(2), 179–196 (1997)zbMATHCrossRefGoogle Scholar
  3. 3.
    Hofmeister, T., Krause, M., Simon, H.U.: Contrast-optimal k out of n secret sharing schemes in visual cryptography. Theoretical Computer Science 240(2), 471–485 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Krause, M., Simon, H.U.: Determining the optimal contrast for secret sharing schemes in visual cryptography. Combinatorics, Probability and Computing 12(3), 285–299 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Naor, M., Shamir, A.: Visual Cryptography. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Simon, H.U.: Boolean composition of visual secret sharing schemes, full version (2012), http://www.ruhr-uni-bochum.de/lmi/simon/publications/others.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hans Ulrich Simon
    • 1
  1. 1.Fakultät für MathematikRuhr-Universität BochumBochumGermany

Personalised recommendations