Some Results on more Flexible Versions of Graph Motif

  • Romeo Rizzi
  • Florian Sikora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7353)


The problems studied in this paper originate from Graph Motif, a problem introduced in 2006 in the context of biological networks. Informally speaking, it consists in deciding if a multiset of colors occurs in a connected subgraph of a vertex-colored graph. Due to the high rate of noise in the biological data, more flexible definitions of the problem have been outlined. We present in this paper two inapproximability results for two different optimization variants of Graph Motif. We also study another definition of the problem, when the connectivity constraint is replaced by modularity. While the problem stays NP-complete, it allows algorithms in FPT for biologically relevant parameterizations.


Metabolic Network Biological Network Subset Versus Strong Module Solution Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alm, E., Arkin, A.P.: Biological Networks. Curr. Opin. Struct. Biol. 13(2), 193–202 (2003)CrossRefGoogle Scholar
  2. 2.
    Ambalath, A.M., Balasundaram, R., Rao H., C., Koppula, V., Misra, N., Philip, G., Ramanujan, M.S.: On the Kernelization Complexity of Colorful Motifs. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS, vol. 6478, pp. 14–25. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Betzler, N., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized Algorithms and Hardness Results for Some Graph Motif Problems. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 31–43. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Böcker, S., Rasche, F., Steijger, T.: Annotating Fragmentation Patterns. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 13–24. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-Free Querying of Protein Interaction Networks. J. Comput. Bio. 17(3), 237–252 (2010)CrossRefGoogle Scholar
  6. 6.
    Chein, M., Habib, M., Maurer, M.-C.: Partitive hypergraphs. Discrete Math. 37(1), 35–50 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Costanzo, M., et al.: The Genetic Landscape of a Cell. Science 327(5964), 425–431 (2010)CrossRefGoogle Scholar
  8. 8.
    Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertex-colored graph pattern matching. J. Discr. Algo. 9(1), 82–99 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dondi, R., Fertin, G., Vialette, S.: Finding Approximate and Constrained Motifs in Graphs. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 388–401. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Edwards, A.M., et al.: Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Gen. 18(10), 529–536 (2002)CrossRefGoogle Scholar
  11. 11.
    Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Sharp Tractability Borderlines for Finding Connected Motifs in Vertex-Colored Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of protein-protein interaction networks. Genome Biol. 5(8), R57 (2004)CrossRefGoogle Scholar
  13. 13.
    Guillemot, S., Sikora, F.: Finding and counting vertex-colored subtrees. Algorithmica, 10.1007/s00453-011-9600-8Google Scholar
  14. 14.
    Guillemot, S., Sikora, F.: Finding and Counting Vertex-Colored Subtrees. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 405–416. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Habib, M., de Montgolfier, F., Paul, C.: A Simple Linear-Time Modular Decomposition Algorithm for Graphs, Using Order Extension. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 187–198. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Koutis, I., Williams, R.: Limits and Applications of Group Algebras for Parameterized Problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 653–664. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: application to metabolic networks. IEEE/ACM T. Comput. Bi. 3(4), 360–368 (2006)CrossRefGoogle Scholar
  18. 18.
    Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Lecture Series in Mathematics and Its Applications. Oxford University Press (2006)Google Scholar
  19. 19.
    Ravasz, E., et al.: Hierarchical Organization of Modularity in Metabolic Networks. Science 297(5586), 1551–1555 (2002)CrossRefGoogle Scholar
  20. 20.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: STOC, pp. 475–484. ACM (1997)Google Scholar
  21. 21.
    Segal, E., et al.: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34(2), 166–176 (2003)CrossRefGoogle Scholar
  22. 22.
    Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24(4), 427–433 (2006)CrossRefGoogle Scholar
  23. 23.
    Sikora, F.: Aspects algorithmiques de la comparaison d’éléments biologiques. PhD thesis, Université Paris-Est (2011) (in French)Google Scholar
  24. 24.
    Zuckerman, D.: Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number. Theor. Comput. 3(1), 103–128 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Romeo Rizzi
    • 1
  • Florian Sikora
    • 2
    • 3
  1. 1.DIMIUniversità di UdineItaly
  2. 2.LIGM - UMR CNRS 8049Université Paris-EstFrance
  3. 3.Lehrstuhl für BioinformatikFriedrich-Schiller-Universität JenaGermany

Personalised recommendations