On the Advice Complexity of the Set Cover Problem

  • Dennis Komm
  • Richard Královič
  • Tobias Mömke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7353)


Recently, a new approach to get a deeper understanding of online computation has been introduced: the study of the advice complexity of online problems. The idea is to measure the information that online algorithms need to be supplied with to compute high-quality solutions and to overcome the drawback of not knowing future input requests. In this paper, we study the advice complexity of an online version of the well-known set cover problem introduced by Alon et al.: for a ground set of size n and a set family of m subsets of the ground set, we obtain bounds in both n and m. We prove that a linear number of advice bits is both sufficient and necessary to perform optimally. Furthermore, for any constant c, we prove that n − c bits are enough to construct a c-competitive online algorithm and this bound is tight up to a constant factor (only depending on c). Moreover, we show that a linear number of advice bits is both necessary and sufficient to be optimal with respect to m, as well. We further show lower and upper bounds for achieving c-competitiveness also in m.


Competitive Ratio Online Algorithm Online Computation Linear Number Online Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S.: Online algorithms: a survey. Mathematical Programming 97(1), 3–26 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. SIAM Journal on Computing 39(2), 361–370 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the Advice Complexity of the k-Server Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the Advice Complexity of the Knapsack Problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 61–72. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the Advice Complexity of Online Problems (Extended Abstract). In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.: On the power of randomization in on-line algorithms. Algorithmica 11(1), 2–14 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Borodin, A., El-Yaniv, R.: Online computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
  8. 8.
    Chattopadhyay, A., Edmonds, J., Ellen, F., Pitassi, T.: A little advice can be very helpful. In: Proc. of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012) (to appear, 2012)Google Scholar
  9. 9.
    Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant information in input. Theoretical Informatics and Applications (RAIRO) 43(3), 585–613 (2009)zbMATHCrossRefGoogle Scholar
  10. 10.
    Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theoretical Computer Science 412(24), 2642–2656 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fiat, A., Woeginger, G.J. (eds.): Online Algorithms 1996. LNCS, vol. 1442. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  12. 12.
    Hromkovič, J., Královič, R., Královič, R.: Information Complexity of Online Problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Irani, S., Karlin, A.R.: On online computation. In: Approximation Algorithms for \(\mathcal{NP}\)-Hard Problems, ch. 13, pp. 521–564 (1997)Google Scholar
  14. 14.
    Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theoretical Informatics and Applications (RAIRO) 45(2), 249–267 (2011)zbMATHCrossRefGoogle Scholar
  15. 15.
    Komm, D., Královič, R., Mömke, T.: On the advice complexity of the set cover problem. Technical Report 738, ETH Zurich (2011)Google Scholar
  16. 16.
    Pǎtraşcu, M.: Towards polynomial lower bounds for dynamic problems. In: Proc. of the 42nd ACM Symposium on Theory of Computing (STOC 2010), pp. 603–610 (2010)Google Scholar
  17. 17.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Mathematische Zeitschrift 27(1), 544–548 (1928)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dennis Komm
    • 1
  • Richard Královič
    • 1
  • Tobias Mömke
    • 2
  1. 1.Department of Computer ScienceETH ZurichSwitzerland
  2. 2.School of Computer Science and CommunicationKTH Royal Institute of TechnologySweden

Personalised recommendations