On the Advice Complexity of the Set Cover Problem
Abstract
Recently, a new approach to get a deeper understanding of online computation has been introduced: the study of the advice complexity of online problems. The idea is to measure the information that online algorithms need to be supplied with to compute high-quality solutions and to overcome the drawback of not knowing future input requests. In this paper, we study the advice complexity of an online version of the well-known set cover problem introduced by Alon et al.: for a ground set of size n and a set family of m subsets of the ground set, we obtain bounds in both n and m. We prove that a linear number of advice bits is both sufficient and necessary to perform optimally. Furthermore, for any constant c, we prove that n − c bits are enough to construct a c-competitive online algorithm and this bound is tight up to a constant factor (only depending on c). Moreover, we show that a linear number of advice bits is both necessary and sufficient to be optimal with respect to m, as well. We further show lower and upper bounds for achieving c-competitiveness also in m.
Keywords
Competitive Ratio Online Algorithm Online Computation Linear Number Online ProblemPreview
Unable to display preview. Download preview PDF.
References
- 1.Albers, S.: Online algorithms: a survey. Mathematical Programming 97(1), 3–26 (2003)MathSciNetMATHGoogle Scholar
- 2.Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover problem. SIAM Journal on Computing 39(2), 361–370 (2009)MathSciNetMATHCrossRefGoogle Scholar
- 3.Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the Advice Complexity of the k-Server Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
- 4.Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the Advice Complexity of the Knapsack Problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 61–72. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 5.Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the Advice Complexity of Online Problems (Extended Abstract). In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- 6.Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.: On the power of randomization in on-line algorithms. Algorithmica 11(1), 2–14 (1994)MathSciNetMATHCrossRefGoogle Scholar
- 7.Borodin, A., El-Yaniv, R.: Online computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
- 8.Chattopadhyay, A., Edmonds, J., Ellen, F., Pitassi, T.: A little advice can be very helpful. In: Proc. of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012) (to appear, 2012)Google Scholar
- 9.Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant information in input. Theoretical Informatics and Applications (RAIRO) 43(3), 585–613 (2009)MATHCrossRefGoogle Scholar
- 10.Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theoretical Computer Science 412(24), 2642–2656 (2011)MathSciNetMATHCrossRefGoogle Scholar
- 11.Fiat, A., Woeginger, G.J. (eds.): Online Algorithms 1996. LNCS, vol. 1442. Springer, Heidelberg (1998)MATHGoogle Scholar
- 12.Hromkovič, J., Královič, R., Královič, R.: Information Complexity of Online Problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- 13.Irani, S., Karlin, A.R.: On online computation. In: Approximation Algorithms for \(\mathcal{NP}\)-Hard Problems, ch. 13, pp. 521–564 (1997)Google Scholar
- 14.Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theoretical Informatics and Applications (RAIRO) 45(2), 249–267 (2011)MATHCrossRefGoogle Scholar
- 15.Komm, D., Královič, R., Mömke, T.: On the advice complexity of the set cover problem. Technical Report 738, ETH Zurich (2011)Google Scholar
- 16.Pǎtraşcu, M.: Towards polynomial lower bounds for dynamic problems. In: Proc. of the 42nd ACM Symposium on Theory of Computing (STOC 2010), pp. 603–610 (2010)Google Scholar
- 17.Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
- 18.Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Mathematische Zeitschrift 27(1), 544–548 (1928)MathSciNetMATHCrossRefGoogle Scholar